
Lot-time diagram source generator

A.T. Hofkamp

April 17, 2007, 517/1440

Abstract

The LATEX lottimediagram package by Van Eekelen ([1]) is very useful to make beautiful
lot-time diagrams in publications. However, writing LATEX source code for such a diagram
from simulation output can be a time-consuming task, especially when the diagram is large
or a lot of parallellism is present in the model.

The lotdiagram.py program described here aims at easing the latter. It takes simulation
output in a pre-defined format, and automatically generates LATEX code suitable for use by
the lottimediagram LATEX package.

1 The lotdiagram.py program

A single entity in the LATEX lottimediagram package [1] (version 2004/05/28 was used here) is
specified by the start time of processing, the end time of processing, the name of the machine, and
the lot number (or numbers in case of a batch) being processed. In a simulation, this information
is not readily available. However, the moment when processing starts, and the moment when
processing ends at a machine is quite easy to obtain. From these events, the entities needed for
the lottimediagram package can be constructed.

Also, normally, several machines operate in parallel in a simulation, which means that the
events from different machines are merged together into one output stream. The lotdiagram.py
program reads the output stream from the simulation, combines the events, and outputs LATEX
code suitable for processing by the lottimediagram package.

1.1 Input format

The lotdiagram.py program needs the events to be in a specific format. Each event must be
written on a seperate line, and each line has the following form:

time machine lots

where time is a real number indicating the time of the event, machine is an identifier (presumably
indicating the machine where the event occurred), and lots are the lot numbers affected by the
event. If a single lot is affected by the event, lots should be a single unsigned integer number
(for example ‘38’). If multiple lots are affected (for example, a batch machine starts processing
3 lots), a literal list should be used (for example ‘[2 3 4]’, which means that lots 2, 3, and 4 are
affected).

Note that start events and end events use the same format. The lotdiagram.py program
understands that the first occurrence of a unique combination of machine and lot numbers means
that a start event happened, and the second occurrence means that an end event has happened.

1

The program allows for different seperators in a line. Between time and machine, and between
machine and lots you can use a space, a tab, or a comma character. In the case of multiple lots
being affected, you can use either a space or a comma character between the lot numbers.

The order of the lot numbers is not relevant, ‘[2 3 4]’ and ‘[4 2 3]’ is equivalent (the program
orders the lot numbers internally). Due to limiations in the LATEX package, you are required to
give a complete list when multiple lots are affected. In other words, there may be no gaps in the
lot numbers. For example, the list [2 1 4] is incorrect, because lot number 3 is missing.

1.2 Output

To make the program output flexible in use, the lotdiagram.py program outputs as little as
possible. By default, it only outputs a sequence of \lot{} and \batch{} lines. By using the -d

(--diagram) option, additional \begin{lottimediagram} and \end{lottimediagram} lines are
generated.

2 Example

Suppose we have the following χ 0.8 program:

// GMBMbE.chi

// generator, generates 14 lots

proc G(c:!nat) = |[n:nat | n:=0 ; *[n<14 -> c!n ; n:=n+1]]|

// machine M processes single lots

proc M(a:?nat, b:!nat) =

|[x:nat

| *[true

-> a?x

; !time," M ",x,"\n"

; delta 2.2

; !time," M ",x,"\n"

; b!x

]

]|

// buffer, collects upto 2 lots in a batch before passing on

proc B(a:?nat, b:!nat*) =

|[x,y:nat

| *[true

-> a?x

; [true; a?y -> b![x,y]

| true; b![x] -> skip

]

]

]|

// machine MB processes batches

proc MB(a:?nat*, b:!nat*) =

2

|[x:nat*

| *[true -> a?x

; ! time, " MB ", x, "\n"

; delta 4

; ! time, " MB ", x, "\n"

; b!x

]

]|

// exit process, accepts batches

proc E(c:?nat*) = |[x:nat* | *[true -> c?x]]|

clus S() =

|[gm,mb:-nat, bmb,mbe:-nat*

| G(gm) || M(gm,mb) || B(mb,bmb) || MB(bmb,mbe) || E(mbe)

]|

xper = |[S()]|

In this example, a lot is represented here by a single natural number, which makes it easy to
output batches (lists of lots). In many cases however, lots contain more information than just
its identification number, for example its type. Batches of such lots can easily be printed by
using a select expression like [y.0|y : lot← xs], where the first field of the lot-tuple contains the
identification number of the lot, and xs is a list of lots.

Executing this program (./GMBMbE > simoutput) generates

0 M 0

2.2 M 0

2.2 M 1

2.2 MB [0]

4.4 M 1

4.4 M 2

6.2 MB [0]

6.2 MB [1]

6.6 M 2

6.6 M 3

8.8 M 3

8.8 M 4

10.2 MB [1]

10.2 MB [2 3]

11 M 4

11 M 5

13.2 M 5

13.2 M 6

14.2 MB [2 3]

14.2 MB [4 5]

15.4 M 6

15.4 M 7

17.6 M 7

17.6 M 8

3

18.2 MB [4 5]

18.2 MB [6 7]

19.8 M 8

19.8 M 9

22 M 9

22 M 10

22.2 MB [6 7]

22.2 MB [8 9]

24.2 M 10

24.2 M 11

26.2 MB [8 9]

26.2 MB [10]

26.4 M 11

26.4 M 12

28.6 M 12

28.6 M 13

30.2 MB [10]

30.2 MB [11 12]

30.8 M 13

34.2 MB [11 12]

34.2 MB [13]

38.2 MB [13]

Applying the lotdiagram.pyprogram (python lotdiagram.py --diagram --input simoutput

--output diagram.tex) gives

\begin{lottimediagram}{14}{39}

\lot(0)(0,2.2){M}

\lot(1)(2.2,4.4){M}

\lot(0)(2.2,6.2){MB}

\lot(2)(4.4,6.6){M}

\lot(1)(6.2,10.2){MB}

\lot(3)(6.6,8.8){M}

\lot(4)(8.8,11){M}

\batch(2,3)(10.2,14.2){MB}

\lot(5)(11,13.2){M}

\lot(6)(13.2,15.4){M}

\batch(4,5)(14.2,18.2){MB}

\lot(7)(15.4,17.6){M}

\lot(8)(17.6,19.8){M}

\batch(6,7)(18.2,22.2){MB}

\lot(9)(19.8,22){M}

\lot(10)(22,24.2){M}

\batch(8,9)(22.2,26.2){MB}

\lot(11)(24.2,26.4){M}

\lot(10)(26.2,30.2){MB}

\lot(12)(26.4,28.6){M}

\lot(13)(28.6,30.8){M}

\batch(11,12)(30.2,34.2){MB}

\lot(13)(34.2,38.2){MB}

4

\end{lottimediagram}

which (after processing with the lottimediagram package) delivers the following picture:

M
M
MB

M
MB

M
M

MB

M
M

MB

M
M

MB

M
M

MB

M
MB

M
M

MB

MB

which is exactly what you would expect from the specification, in particular the gaps in the
diagram in the processing of a lot are caused by the fact that the buffer process B did not output
events.

The missing legenda along the axis can easily be added manually once you are satisfied with
the contents of the diagram. If you don’t like to make manual changes to generated diagrams,
you can drop the --diagram option (that is, run python lotdiagram.py --input simoutput

--output lotlines.tex) and include the generated output in the following way

\begin{lottimediagram}{14}{40}

\timeaxislabel{time [h]}

\timetickinterval{5}

\lotaxislabel{lot nr}

\lottickinterval{2}

\input{lotlines} % load the generated lotlines.tex file

\end{lottimediagram}

which reads the lot-time data from the lotlines.tex file, and generates the following (prettier)
picture:

5

time [h]
0 5 10 15 20 25 30 35 40

lo
t

n
r

0

2

4

6

8

10

12

M
M
MB

M
MB

M
M

MB

M
M

MB

M
M

MB

M
M

MB

M
MB

M
M

MB

MB

Acknowledgements

Thanks to Joost and Ad for writing the lottimediagram package, Erjen for creating an excuse
to write this Python program, and both Joost en Erjen for reviewing an earlier version of this
document.

References

[1] Joost van Eekelen. Lot-time diagrams in LATEX using package lottimediagram, August 2004.
Available at http://se.wtb.tue.nl/documentation/.

6

