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Abstract

Systems such as organizations, products, and pro-
cesses consist of elements with interdependencies.
The network of dependencies between elements of
a system can be captured using the Dependency
Structure Matrix (DSM) modeling technique. Al-
gorithms and heuristics exist to detect decomposi-
tions within the network of dependencies. A bus
module is a group of elements that act as a hub –
i.e. its elements have many interdependencies with
other elements in a system. A bus module may be
global or local, depending on whether it integrates
the whole system or a module. This article has
two contributions. First of all, a novel algorithm is
proposed for the detection of bus modules through-
out a hierarchical system structure, i.e. the detec-
tion of global and local bus modules. Secondly, a
new quality index is presented that is specifically
designed to score decompositions that contain bus
modules on a local level. The proposed algorithm
and index are compared for results found in the
literature for the Pratt & Whitney Aircraft Engine
case and for a recently published Complex Elevator
System case.

1 Introduction

Systems are often decomposed into multiple mod-
ules to reduce complexity, decrease development
times, and facilitate a modular product family ap-
proach [1]. That is, the elements of a system
are grouped into more comprehensible packages or
modules. Finding such a modular decomposition is
a non-trivial task. The dependencies between ele-
ments play a key role herein. Typically, one seeks
modules that have many internal dependencies and
relatively few external dependencies [2]. Solutions
strike a balance between multiple objectives such

as modularity and integrality and are often subject
to experience and expertise.

The Dependency Structure Matrix (DSM) is a
modeling technique that comprises the dependen-
cies between elements in a system and lends itself
for module detection analysis [2, 3]. The definition
of a system, component, or dependency adapts to
the modeling context. Examples are products con-
sisting of components and connections, organiza-
tions of people with communications, and a process
consisting of tasks and dependencies.

In a DSM, the elements are displayed on both
axes of a matrix in identical order. See Figure 2a
for an example of the Ford Climate Control Sys-
tem. The matrix cell values represent the depen-
dencies between the elements. Categorical, binary,
weighted, and directed DSM variations exist. The
DSM is closely related to the adjacency matrix of
a graph [4]. The elements and dependencies within
a system are represented by the vertices and edges
in a graph, respectively, see Figure 1.
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Figure 1: Graph representation of the Climate Con-
trol System DSM given in Figure 2a. Edge and vertex
color denote edge weight and vertex degree (number of
connections), respectively.
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(a) Weighted DSM of the Ford Climate Control System [2].
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(b) Handmade decomposition by Pimmler and Eppinger as
found in [6].
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(c) Decomposition by the HMC algorithm as presented in [6]
with α = 2, β = 2.0, µ = 2.0, γ = 1.5.
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(d) Decomposition with local buses obtained using the LB-
HMC algorithm with α = 2, β = 2.0, µ = 2.0, γ = 1.5, as
presented in Section 4

Figure 2: Climate Control System DSM with weak (1) and strong (2) component dependencies [2, 5, 6]. Shaded
areas denote the connections from and to the bus modules (upper left).
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DSMs are richer than adjacency matrices in the
aspect that it is common to display multiple depen-
dency types and strengths at once [7]. In case of
the product DSM, exemplary dependency types are
energy, spatial, information, and material flow [8].
Other variations exist that map performance indi-
cators such as change propagation and robustness
onto the DSM [2]. Another enrichment is the dis-
play of modules using a modified ordering of the el-
ements on both axes and displaying module bound-
aries as rectangles in the DSM as in Figure 2 [9].

Creating a decomposition of a DSM can be done
by hand or using clustering algorithms. Clustering
by hand quickly becomes increasingly difficult for
DSMs with more than a few components. Most
existing clustering algorithms can take a graph’s
adjacency matrix or DSM as input and return a
set of element groupings or modules as output.

However, their solutions often need the review of
an expert to be conveyed correctly [2, 10]. Exam-
ples of clustering algorithms are K-means cluster-
ing [11], Spectral clustering [12], optimizing Module
Description Length (MDL) [13], and Markov Clus-
tering [14]. See [3, 15–17] for reviews and overviews
of more clustering algorithms and applications.

Some clustering algorithms are also capable of
finding a hierarchical decomposition instead of a
single level of modules for a system [15, 16]. This
difference is illustrated by Figure 2b and Figure 2c,
where the former shows a single level handmade
decomposition and the latter a hierarchy (modules
within modules). Wilschut et al. presented a hi-
erarchical clustering algorithm named Hierarchical
Markov Clustering based on the work on Markov
Clustering by Van Dongen [6, 14, 18].

Products typically contain a set of components
that act as the hub for most of the others. For
DSMs this is often referred to as the bus, named
after the bus in a computer. Buses are the inte-
grative modules of a system. From a graph per-
spective, bus elements would typically be the nodes
with many incoming and outgoing edges – or node
degree. In Figure 1, nodes H and M are illustrative
examples of bus nodes. In clustering algorithms, as-
signing bus elements to a module can be hard and
counter intuitive [6]. This drives the need for the
algorithmic detection of bus modules that groups
highly integrative elements together [6, 10, 12, 13,
19, 20]. In Figure 2b for example, the elements
{D,J,K,L,M} are assigned to the bus.

Bus modules that integrate the entire system
are called global buses. Examples of global buses
are module {D,J,K,L,M} in Figure 2b and mod-
ule {F,H,K,M} in both Figure 2c and Figure 2d.
Buses that integrate the elements of a module are
called local buses and are seldom covered. Mod-
ules {F}, {C,G, P} and {I} are the local buses in
Figure 2d.

Wilschut et al. mentions the detection of local
buses as future work. Even though Sharman and
Yassine mention the existence of auxiliary buses
and Hölttä-Otto et al. of weak buses, they do not
provide algorithms to detect them [10, 21]. The
first contribution of this article addresses this. In
Section 4 an algorithm is proposed to detect buses
on a local level throughout a hierarchical decompo-
sition of a system.

Clustering algorithms typically have a few pa-
rameters that can be tuned to optimize the re-
sulting decompositions. Modularity indices have
been introduced to rank different decompositions
of a system by quality measures [13, 21–23]. Typ-
ically, indices trade-off objectives such as depen-
dency density within a module and independence
of other modules, regardless of the method used
to obtain the result. Yu, Yassine, and Goldberg
address global bus modules in the calculation of
Model Description Length in [13], as well as Jung
and Simpson in [22]. However, neither treat hier-
archical decompositions or local bus modules. The
second contribution of this work is a novel index ca-
pable of ranking hierarchical decompositions with
local bus modules.

The outline is as follows: first, related work is
discussed in Section 2 and is followed by several
definitions regarding a decomposition in Section 3.
In Section 4, the algorithm is presented that ob-
tains decompositions with local bus modules for a
given DSM. In Section 5, the index is introduced
as a means to rank this type of decompositions for
a given DSM. Two case studies are considered us-
ing the algorithm and index in Section 6. The first
case study considers the Pratt & Whitney Aircraft
Engine [5]. It has been studied thoroughly before
and therefore is considered a good benchmark case
for the proposed algorithm and index. The second
case study considers a relatively new Complex El-
evator System case. It was only recently published
by Niutanen et al. in [24]. Conclusions and future
work are to be found in Section 7 and Section 8.
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2 Related work

This section covers the principles of a bus detec-
tion algorithm and two existing decomposition in-
dices that can handle bus modules. The DSM of
the Ford Climate Control System is used as the ex-
ample, which is shown in Figure 2a. This Climate
Control System has been modeled by its 16 major
components, which are shown on both axis of the
DSM. In further figures, the components have been
replaced by their abbreviated labels, as shown in
the other figures of Figure 2.

Eppinger and Browning made an abstraction
of the original Climate Control System DSM by
Pimmler and Eppinger, which reduces four different
dependency types to a single dependency strength
varying between weak and strong [2, 5]. This has
been quantified in this article using weights of 1
and 2, respectively. Assigning some form of nu-
merical weights to the dependencies in a DSM is
a necessary step to obtain viable input for cluster-
ing algorithms. Essentially, an adjacency matrix is
obtained from the DSM.

The algorithm presented in Section 4 incorpo-
rates a hierarchical clustering algorithm and a bus
detection algorithm. Hierarchical Markov Cluster-
ing (HMC) is the chosen hierarchical clustering al-
gorithm [6]. This algorithm has several key ben-
efits. Among them is the absence of a prescribed
number of modules or levels in the resulting hierar-
chical decomposition. As such, little knowledge of
the system is required to obtain a decomposition.
It provides flexibility in the output using three intu-
itive parameters that affect the probability of larger
clusters or more hierarchical levels in the result, for
example. Its limitation is that it can only take a
positively weighted square matrix as input. There-
fore, undesired or detrimental dependencies cannot
be included, which are often given by negative val-
ues in a DSM.

Wilschut et al. introduced a bus detection algo-
rithm in [6], which we will refer to as Gamma bus
detection after its only parameter γ. Section 2.1
elaborates on this algorithm. When referring to
HMC, we refer solely to the clustering algorithm –
without Gamma bus detection. Both are used in
the algorithm presented in Section 4, but can be
replaced by other algorithms with the same func-
tionality (being clustering hierarchically and bus
detection).

2.1 Gamma bus detection

Bus detection algorithms try to detect which el-
ements of a system are significantly more integral
than others. Gamma bus detection selects elements
with a significantly higher degree in a DSM than
others to be the bus. A DSM element’s degree is
the number of nonzero entries in its row and col-
umn or number of incoming and outgoing edges in
the network graph. For example in Figure 2a or
Figure 1, element A of the Climate Control System
has a degree of 4 and M has a degree of 8.

Let the array DNZ contain the sorted non-zero
element degrees of a DSM. The sorted non-zero el-
ement degrees of the Climate Control System are:

DNZ = [dA, dD, dL, dB , dN , dC , dE , dI ,

dJ , dO, dG, dP , dF , dH , dK , dM ]

= [4, 4, 4, 6, 6, 8, 8, 8,

8, 8, 10, 10, 12, 12, 12, 16]

(1)

Where dA, dB , . . . , dP denote the element degree of
the Climate Control System’s components with la-
bel A,B, . . . , P .

Let DB and DNB hold the sorted degrees of the
elements that are going to be assigned to the bus or
remain non-bus elements. Bus elements are defined
as the elements with a degree that is higher than a
factor γ times the median of the remaining non-bus
degrees, which is denoted m(DNB).

Initially, DNB is set to DNZ. The elements with
an element degree greater than γ · m(DNB) are
then moved from DNB to DB recursively, until no
more new bus elements are found for a given input
parameter γ. As such, γ has to be greater than
1, since all elements would become bus elements in
that case.

For γ = 1.5, this algorithm results in the follow-
ing for the Climate Control System example:

1. DNB = DNZ.

2. m(DNB) = 8, so the threshold is 1.5 · 8 = 12
and thus {F,H,K,M} are added to DB and
removed from DNB.

3. m(DNB) = 8 again. This means the threshold
is unchanged and no more elements need to be
added to DB and the algorithm stops.
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2.2 Indices with bus handling

Algorithms are used to obtain decompositions and
indices have been introduced to rank them accord-
ing to quality metrics. These measure the quality of
a decomposition with respect to the dependencies
in the DSM of a system. Most modularity indices in
the literature reward decompositions that contain
rather independent modules with strong dependen-
cies within each module. In general, bus modules
have a negative influence on the metrics used in
these indices as their nature is integrative rather
than independent.

Two indices have been found in the literature
that explicitly account for bus modules in a sys-
tem: Model Description Length (MDL) by Yu, Yas-
sine, and Goldberg and the modularity index (MI)
by Jung and Simpson [13, 22]. Such functionality
is necessary to correctly rank decompositions that
contain bus modules. In the remainder of this sec-
tion MDL and MI are discussed in more detail.

2.2.1 Model Description Length

MDL is a measurement of the required effort to de-
scribe all the deviations from a perfectly modular
decomposition. Perfect modularity is defined as a
system with equally sized modules, that each have
as much internal dependencies and as little exter-
nal dependencies as possible. Exceptions are de-
pendencies from and to bus modules, which should
be maximized, too.

Following the simplified notation for MDL by
Hölttä-Otto et al., MDL is given by Equation (2).
The weight of the three summation terms has been
set to 1

3 to that end.

MDL =
1

3

(
nc log nn + log nn

nc∑
i=1

cli
)

+
1

3
S1 +

1

3
S2

(2)

Where nc is the total number of modules, nn is the
number of nodes (or elements in the DSM) and cli
is the size of module i.

The first term aims to equalize the size of mod-
ules with respect to the number elements. Too
many modules result in a higher description length.
S1 represents number of missing entries (equal to
zero) in the DSM inside modules and from and

to the bus modules. S2 represents the number of
nonzero entries between non-bus modules. With
slight adjustments, the MDL can also be calculated
for a normalized weighted matrix.

One of the advantages of this index is that it
takes cluster size into account with respect to the
number of elements involved. A drawback is that
the index is an unbounded number where better de-
composition quality results in a lower index value.
The proposed index in Section 5 sums metrics for
each sub-system in a hierarchical decomposition.
An unbounded number is therefore not applicable
to the proposed approach as the number of sub-
systems in a decomposition is not pre-defined.

2.2.2 Modularity Index

The Modularity Index (MI) by Jung and Simpson
consists of three metrics that are calculated for each
module, with an updated set of equations if a bus
module is present. The three metrics can be sum-
marized as module independence (MI1), module
density (MI2) and diagonalization (MI3). A nor-
malized weighted sum results in a single MI value
for a modular decomposition.

MI1: independence For non-bus modules, this is
the fraction of dependencies within each non-
bus module with respect to the total number
of dependencies between its own elements and
other non-bus elements. Both the fraction of
dependency count and fraction of dependency
weight are taken into account.

MI2: density The dependency density is defined
as the the number of dependencies within each
module with respect to the number of poten-
tial dependencies in each module. Similar to
MDL, bus modules are an exception where the
number of dependencies from and to bus mod-
ules are also taken into account, as well as the
total number of potential dependencies from
and to bus modules.

MI3: diagonalization Besides the structural as-
pect of a product structure, diagonalization
also rewards the dependencies closer to the di-
agonal. This makes more sense from a process
DSM perspective, where more distance to the
diagonal indicates further spread-out feedback
loops. The bus is excluded from this metric.
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The line of thought of the first two metrics is
most relevant for hierarchical decompositions. The
diagonalization metric is less applicable to such a
decomposition, where the order of the elements is
largely dominated by the top-down ordering of all
nodes. A downside to the implementation of the in-
dependence metric MI1 is that it is not necessarily
bounded between [0, 1] and can become negative.
The used normalization scheme in MI is the cause
of this. This is a drawback if it were to be used
in the proposed index in Section 5. The lack of
strict bounds would be obfuscating in sums of in-
termediate metrics for the multiple sub-systems in
a hierarchical decomposition.

Therefore, a simplified, strictly bounded version
of both the independence and density metric is in-
cluded in the proposed index presented in Section 5.
Independence and density are calculated for each
sub-system as a whole in a hierarchical decompo-
sition as opposed to each module in a system as
done by Jung and Simpson, resulting in a single
normalized value bounded between [0, 1].

3 Decompositions as trees

The decomposition of a DSM can be modeled using
trees. Trees provide an intuitive representation as
well as formal means to describe a decomposition.
Figure 3 provides a tree view of the handmade mod-
ular decomposition of the Climate Control System
shown in Figure 2b. In this tree {0} denotes the
root node of the tree and nodes {1, 2, 3, 4} repre-
sent the modules. The dark color of node {1} in the
tree indicates that it is a bus module. The nodes
{A,B, . . . , P} correspond to the DSM elements.

Hierarchical Markov Clustering (HMC) yields hi-
erarchical decompositions such as Figure 2c with
the corresponding tree shown in Figure 4. A hierar-
chical decomposition contains sub-modules within
modules such as nodes {5, 6} within {3} in the
given tree, whereas a modular decomposition only
contains a single level of modules – directly followed
by the DSM elements.

Decompositions obtained using a clustering algo-
rithm may contain disjoint systems, without com-
mon dependencies. In those cases the result may
not be a single tree with a single root node, but in
fact a set of trees or a forest – each with their own
root node.

0
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A B E

3

F H I

4

C G N O P

Figure 3: Handmade modular decomposition corre-
sponding to Figure 2b.
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Figure 4: Hierarchical decomposition obtained using
HMC corresponding to Figure 2c.

3.1 Forest of trees

Any of the given DSM decompositions can be de-
scribed using a forest of rooted, directed, labeled
trees. A description thereof is given in the remain-
der of this section and is used to describe the al-
gorithm in Section 4 and decomposition index in
Section 5.

A forest F = (N , E) is a directed acyclic graph,
with nodes N and edges E . An edge (p, c) ∈ E
denotes a direct parent-child relationship between
parent node p and child node c. The DSM’s ele-
ments are the leaf nodes L ⊂ N of this graph and
have no children by definition.

Let FR = (N , E) denote a forest with root nodes
r ∈ R of the trees in it. Let a tree with root node r
then be denoted by Tr = (N r, Er), where N r ⊂ N
and Er ⊂ E . Each tree is a group of connected
components in the forest. The following holds for
any tree in the forest:

Rooted A tree is assumed to have a single root
node and DSM elements as the leaf nodes.

Directed Every node has exactly one parent, ex-
cept for the tree’s root node which has none.
A node can have any number of children.

Labeled Bus nodes are nodes that are labeled as
a bus. Dark shaded nodes in figures represent
nodes that are labeled as a (local) bus. Mod-
ules are denoted by numbers and leaf nodes
(DSM elements) by uppercase letters.
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Note that any branch (sub-tree) starting in any
node n ∈ N is also a tree following these definitions.
A branch is denoted Tn = (Nn, En), using the su-
perscript n to indicate the branch’s root node.

The set of nodes N can be partitioned into a set
of bus nodes and a set of non-bus nodes. These are
denoted as NB and NNB, respectively.

3.2 Parent, children, grandchildren

The parent of a node n is denoted by P(n) ⊂ N .
Each node n has only one parent node p for which
a unique edge (p, n) ∈ E exists.

The set of child nodes of a parent node n are
the nodes with a direct edge originating from node
n. The set of children of a node n are given by
C(n) ⊂ N and defined as:

C(n) = {c ∈ N | (n, c) ∈ E} (3)

The degree of a node n equals the number of
children it has. This can be obtained using the set
cardinality (size) of C(n), denoted as |C(n)|.

Let L denote the set of leaf nodes, which are the
nodes with no children.

L = {n ∈ N | |C(n)| = 0} (4)

Let G(n) denote the set of grandchildren of a
node n. These are the children of children of this
node, as defined in Equation (5). If any child node
c ∈ C(n) is a leaf node, that leaf node itself is also
included in the grandchildren of n.

G(n) =
⋃{
C(c) | c ∈ C(n)

}
∪
(
C(n) ∩ L

)
(5)

Where the first part corresponds to the union of all
sets of children of children and the second part are
the children that are leaf nodes of a node n.

3.3 Depth and height

The depth of a node n in forest FR is measured
from the root nodes that have a depth of 0 and is
defined by Equation (6). The set of nodes with a
certain depth d in the forest is defined by Equa-
tion (7). Conversely, let the height of a node n
be given by the maximum depth of any of the leaf
nodes Ln in its branch, see Equation (8).

depth(n) =

{
0 n ∈ R
depth(P(n)) + 1 n ∈ N \ R

(6)

D(d) = {n ∈ N | depth(n) = d} (7)

height(n) = max{depth(l) | l ∈ Ln} − depth(n)
(8)

Where D(d) denotes all nodes at a certain depth
in the forest and Ln the leaf nodes of the branch
starting in node n.

4 Local bus detection

The algorithm presented in this section integrates
a bus detection algorithm and a hierarchical clus-
tering algorithm to obtain a hierarchical decompo-
sition of a system with buses on a local level.

The algorithm outline is given in Section 4.1 and
the key steps are given in Section 4.2. Finally,
this section is concluded with an example of the al-
gorithm using Hierarchical Markov Clustering and
Gamma bus detection for the Climate Control Sys-
tem DSM in Section 4.3.

4.1 Algorithm outline

In short, the algorithm performs a local bus search
from top to bottom over each module in each level
of a hierarchical decomposition. If the bus detec-
tion algorithm detects bus elements, it replaces that
module’s branch (the sub-tree starting at that mod-
ule) with a new branch.

That new branch consists of the results of the
hierarchical clustering algorithm on both the bus
elements and non-bus elements. As such, when
the algorithm searches for bus elements at a cer-
tain level, it only replaces parts of the tree that are
deeper in the tree, leaving the checked levels intact.

4.2 Algorithm steps

For a positively weighted adjacency matrix A, the
algorithm is given in Algorithm 1. It results in a de-
composition as a forest FR, as defined in Section 3.
It consists of five key steps, being initialization, it-
erations, local bus detection, re-clustering and the
merge of results. These key steps are described be-
low.
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Algorithm 1 Find local bus decomposition

1: procedure decomposition(A)
2: FR ← hierarchy(A)
3: for r ∈ R do
4: d← 0
5: while d ≤ height(r)− 1 do
6: for n in D(d) do
7: LnB,LnNB ← detect bus(An)
8: if LnB 6= ∅ then
9: FB ← hierarchy(An

LB
)

10: FNB ← hierarchy(An
LNB

)

11: Tn ← bus merge(FB,NB)
12: end if
13: end for
14: d← d+ 1
15: end while
16: end for
17: return FR

18: end procedure

1: Initialization The forest FR is initialized at
Line 2 with a hierarchical decomposition by
the hierarchical clustering algorithm. The de-
composition does not contain any bus modules
at this point.

2. Iterations At Lines 3 to 6 an iteration is
started over each node at a certain depth n ∈
D(d) in each tree with a root node r in the
forest FR. As such, each tree will be checked
top down for the presence of bus elements in
its modules.

3. Local bus detection The local bus detection
is done at Line 7, where the bus detection algo-
rithm is applied to the sub-matrix An of adja-
cency matrix A. This sub-matrix is the adja-
cency matrix of all leaf nodes (DSM elements)
in the branch starting at node n. It returns a
set of bus leaf nodes (elements) LnB and the set
of remaining non-bus leaf nodes LnNB.

4. Re-clustering If the set of bus nodes is not
empty (Line 8), both sets of nodes are sub-
jected to the hierarchical clustering algorithm
at Line 9 and 10. Each call returns it’s respec-
tive temporary decomposition, given by forests
FB and FNB.

5. Merge results These temporary forests are
then merged at Line 11, where the branch Tn

starting at node n in the original forest is re-
placed by the result of merging FB and FNB.
This merge works as follows. The root node
n remains intact, but its children are replaced.
The root nodes B of the bus forest FB become
children of n. These bus root nodes receive
the bus label, indicating they are bus nodes
for their parent n. It is possible that the hi-
erarchical clustering algorithm returns a forest
FNB with a single root node for the non-bus
set of nodes. In that case, the children of that
root node are added to the children of n. Oth-
erwise, the root nodes NB are added to the
children of n, similar to the bus forest. This
distinction is made because a single bus mod-
ule is allowed, while a a single non-bus module
would be counter intuitive. A bus module can-
not perform an integrative function for a single
non-bus module.

4.3 Example: LB-HMC

The implementation of the algorithm uses Hierar-
chical Markov Clustering (HMC) and Gamma bus
detection as described in Section 2.1. The imple-
mented algorithm is hence forward referred to as
Local Bus HMC or LB-HMC for short.

Because of HMC’s input requirements, LB-HMC
also requires a positively weighted DSM or adja-
cency matrix as input, such as the Climate Control
System DSM given in Figure 2a. The algorithm
adopts the parameters of HMC and Gamma bus
detection with no additions. As such, it has α, β
and µ to tune HMC and γ to tune Gamma bus
detection.

The following describes the first bus detection it-
eration of the LB-HMC algorithm for the Climate
Control System DSM. The steps of this first itera-
tion and the final result of the algorithm are shown
in Figure 5:

1: Initialization The initial hierarchical decom-
position that is obtained using HMC is given
in Figure 5a. That is, the algorithm finds three
modules {1, 2, 3} in a single system {0}.

2. Iterations The initial decomposition has a sin-
gle root node and three levels. First, the only
root node at depth 0 will be checked for buses.
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(a) Initial hierarchical decomposition.
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(b) Detected bus nodes (marked) at depth 0 for its only
module, module 0 (also marked).

1

F H K M

(c) Results of re-clustering the bus elements of node 0 with
the root node already marked as a bus node.

2
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3

4

C D I J
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(d) Results of re-clustering the remaining non-bus elements
of node 0.
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(e) Decomposition after insertion of the bus and non-bus
re-clustering results for node 0.
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N O 6

I D J
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(f) Final decomposition after all levels and modules have
been checked for local buses.

Figure 5: Example of LB-HMC applied to the Climate Control System DSM given in Figure 2a. The first figure
is the initial hierarchy, followed by the first iteration of the local bus search routine and the final result. The
used parameters are α = 2, β = 2.0, µ = 2.0, γ = 1.5.

Subsequently, the algorithm will iterate over
the modules at depth 1 and onwards. More
levels and modules may be introduced as local
bus modules are found and parts of the decom-
position are replaced.

3. Local bus detection The result of the bus de-
tection for node 0 is given in Figure 5b. It finds
4 bus elements, being {F,H,K,M}.

4. Re-clustering The found bus elements and
non-bus elements are re-clustered separately.
The result of the re-clustering of the bus el-
ements is given in Figure 5c. It has a single
root node, which is marked as a bus node. The
result of the re-clustering of the non-bus ele-
ments is given in Figure 5d. The result is a
forest with multiple root nodes {2, 3, L}.

5. Merge results For this merge, the children of
node 0 from Figure 5a are replaced by the root
node {1} of the bus decomposition and the
root nodes {2, 3, L} of the non-bus decompo-
sition. As the non-bus decomposition was al-

ready a forest with multiple root nodes, there
is no need to remove a single root node.

The iterations continue for modules at depths of
1 and 2 to detect additional local bus modules. The
final result thereof is shown in Figure 5f.

1. For node {1} at depth 1, this results in {F}
as the local bus. {H,K,M} is re-clustered
as a result of this, which separates {H} and
{K,M} into separate modules.

2. For node {2}, no local buses are found and
therefore no changes are made to its branch.

3. For node {3}, this results in {C,G, P} as the
local bus elements, which end up in a single
module as node {5}.

4. For node {4} at depth 2, no local buses are
found and therefore no changes are made to
its branch.

5. For node {5}, no local buses are found.

6. For node {6}, this results in {I} as the local
bus.
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5 Local Bus Decomposition
Index

In this section, the Local Bus Decomposition In-
dex (LBDI) is introduced. It is a normalized metric
that can be used to rank the quality of decompo-
sitions for a DSM. It is bounded between 0 and 1,
where a higher value indicates higher quality. The
LBDI requires a DSM’s adjacency matrix A and
a decomposition represented as a rooted, directed,
labeled tree as explained in Section 3.

First, some additional definitions are given in
Section 5.1 and Section 5.2. This is followed by
the independence and density metrics in Section 5.3
and Section 5.4. Finally, these metrics are com-
bined into the LBDI value in Section 5.5.

5.1 System nodes

The LBDI requires a tree Tr with a single root r as
input as opposed to a forest with multiple trees. A
root node r is added if the decomposition contains
multiple independent trees, which has the forest’s
FR root nodesR as its children such that C(r) = R.

Only the system nodes in a decomposition are
measured for quality. The system nodes are de-
noted NS and are defined as:

� The root node.

� All nodes with at least one non-leaf child.

� All nodes with at least one bus child.

For example, Figure 6 shows the tree of a de-
composition for the Climate Control System, where
nodes {0, 1, 3, 6} are marked as system nodes. They
are system nodes since node {0} is the root node
and nodes {1}, {3}, and {6} all have both a bus
child and a non-leaf child.

0

1

F H 4

K M

2

A B E

3

5

C G P

N O 6

I D J

L

Figure 6: Decomposition obtained using LB-HMC cor-
responding to Figure 2d. System nodes are marked.

The quality of each system node in the decompo-
sition is expressed using an independence and a de-
pendency density metric. These metrics work sim-
ilar to the metrics discussed in Section 2.2. These
values for all system nodes can be combined into a
single normalized LBDI value for the whole decom-
position, as explained in Section 5.5.

5.2 Adjacency matrix coarsening

The quality of each system node is based on the
density and independence of its children. In this
respect, each system node is considered to form a
separate sub-system with its own associated DSM.
In this DSM, the grandchildren of the system node
are the elements and the children of the system
node are the modules. As such, the system node’s
DSM is represented by a coarsened sub-matrix of
matrix A. That is, the dependency weights of the
system node’s DSM between elements i and j is the
sum of all the dependencies between the leaf nodes
in the branches starting in grandchildren i and j.

Let An
G denote the coarsened sub-matrix of A

such that all cells indicate the adjacency between
two grandchildren i and j as defined in Equa-
tions (9) and (10).

a′(i, j) =
∑
li∈Li

∑
lj∈Lj

A(li, lj) (9)

An
G(i, j) =

{
a′(i, j) if i 6= j

0 otherwise
(10)

Where the scalar a′(i, j) is the sum of all dependen-
cies in adjacency matrix A between the leaf nodes
Li and Lj of the branches starting in node i and j.
The diagonal of An

G is set to 0, as is common prac-
tice in DSM modeling (an element does not depend
on itself).

Let Bn
G be the binary variant of An

G and is defined
as:

Bn
G(i, j) =

{
1 if An

G(i, j) > 0

0 otherwise
(11)

This binary matrix is used to count amounts
of dependencies as opposed to their dependency
weights.
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5.3 Independence metric

A system node’s adjacency matrix An
G may con-

tain both dependencies within modules (intra) and
dependencies between modules (inter). The bal-
ance between intra-module and inter-module con-
nections is used to express the independence of
the modules. Relatively more intra-module depen-
dencies than inter-module dependencies result in a
higher independence metric.

The independence metric is calculated for non-
bus modules only, since bus modules should be very
interdependent by definition. It accounts for both
the fraction of dependency weight or count that are
intra-module dependencies with respect to the total
dependency weight or count of both the intra- and
inter-module dependencies.

The independence of a system node n is denoted
ιn(xw). An input parameter xw ∈ [0, 1] defines
the contribution of the weight independence ιnw ver-
sus the count independence ιnb as defined in Equa-
tion (12).

ιn(xw) = xwι
n
w + (1− xw)ιnb (12)

This prioritizes either stronger dependencies or the
existence of dependencies when measuring the in-
dependence by tuning xw.

The weight independence ιnw of a node n is the
fraction of connection weight within non-bus chil-
dren (modules) of n with respect to the total
connection weight between the grandchildren (el-
ements) of those non-bus children as defined in
Equations (13)–(15).

wn
NB =

∑
(i,j)∈GNB(n)×GNB(n)

An
G(i, j) (13)

wn
NB,intra =

∑
c∈CNB(n)

∑
(i,j)∈C(c)×C(c)

An
G(i, j) (14)

ιnw =
wNB,intra

wNB
(15)

Where wn
NB is the total dependency weight between

grandchildren of a node n from non-bus children
of n. This subset of grandchildren of a node n is
denoted by GNB(n). wn

NB,intra is the part of de-
pendencies that resides within (intra) the non-bus
children, between their grandchildren. The weight
independence ιnw then follows after division.

Similar to the weight independence calculation,
the binary independence ιnb follows using the binary
variant of the coarsened adjacency matrix Bn

G in-
stead of the weighted matrix An

G . This results in
Equations (16)–(18).

bnNB =
∑

(i,j)∈GNB(n)×GNB(n)

Bn
G(i, j) (16)

bnNB,intra =
∑

c∈CNB(n)

∑
(i,j)∈C(c)×C(c)

Bn
G(i, j) (17)

ιnb =
bNB,intra

bNB
(18)

Where bnNB is the total dependency count between
grandchildren from non-bus children and bnNB,intra

is the part thereof that resides within (intra) the
non-bus children between their grandchildren.

The distinction of local buses can create a situa-
tion where there are no dependencies between non-
bus children. See the {I,D, J} module in Figure 2d
for an example. In such cases, Equations (15)
and (18) would result in divisions by zero. However,
we assume these modules to be fully independent,
resulting in an independence metric ιn = 1.

5.4 Density metric

In general, one strives for tightly integrated mod-
ules in a (sub-) system. Modules whose elements
are very dependent on each other contribute to a
higher density metric, which reflects their tight in-
tegration. The density of a (sub-) system is cal-
culated for all modules (bus and non-bus). It is
expressed as the fraction of potential dependencies
within non-bus modules and from and to bus el-
ements that exist. That is, bus modules should
have both dense intra-module dependencies as well
as inter-module dependencies.

The density metric of a system node n is denoted
ρn as defined in Equation (19).

ρn =
bnB + bnNB,intra

∆n
B + ∆n

NB,intra

(19)

Where numerator denotes the existing dependency
count related to all bus grandchildren bnB and
within non-bus children bnNB,intra. The denomina-
tor denotes the number of potential dependencies
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of the bus grandchildren ∆n
B and within non-bus

children ∆n
NB,intra. These are elaborated on in the

coming paragraphs.
In the numerator of Equation (19), bnB denotes

the dependency count from and to bus modules as
defined in Equation (20) and bnNB,intra denotes the
dependency count within (intra) non-bus modules
as defined in Equation (17).

bnB =
∑

(i,j)∈GB(n)×GB(n)

Bn
G(i, j)

+
∑

(i,j)∈GB(n)×GNB(n)

Bn
G(i, j) + Bn

G(j, i)
(20)

Where GB(n) represents the grandchildren of a
node n from bus children of n and GNB(n) repre-
sents the grandchildren of n from non-bus children
of n. As such, the first sum counts all dependen-
cies between grandchildren from bus children and
the second sum counts all dependencies from and
to grandchildren from the non-bus children of n.

In the denominator of Equation (19), ∆n
B de-

notes the number of potential dependencies from
and to bus elements as defined in Equation (22)
and ∆n

NB,intra does so for the intra non-bus module
dependencies as defined in Equation (21). The po-
tential number of dependencies is also referred to
as the area of a part of a DSM.

∆n
NB,intra =

∑
c∈CNB(n)

|C(c)| ·
(
|C(c)| − 1

)
(21)

∆n
B = |GB(n)| ·

(
|GB(n)| − 1

)
+ 2 · |GB(n)| · |GNB(n)|

(22)

Where CNB(n) denotes the non-bus children of a
node n. In Equation (21), the area is calculated for
each non-bus child using the set cardinality (size) of
its respective children |C(c)|. The minus 1 excludes
the diagonal of the area in the coarsened DSM. In
Equation (22), the first term represents the num-
ber of potential dependencies between grandchil-
dren of a node n from bus children of n. The second
term represents the potential dependencies between
grandchildren of a node n from bus children of n
and the grandchildren of n from non-bus children
of n.

The density metric ρn for a system node n then
follows by division of the total count by the sum of
the respective areas.

5.5 LBDI value

The LBDI value follows from the independence and
density metrics of all system nodes. The normal-
ization scheme uses the area of each system node
as the weight for its metrics. As such, larger
(sub-) systems have a larger contribution to the
final index value as they are more complex. It has
two parameters, being xι and xw. The parameter
xι ∈ [0, 1] defines the contribution of the indepen-
dence with respect to the density metric. The pa-
rameter xw ∈ [0, 1] defines the contribution of the
dependency weight when calculating the indepen-
dence metric, as explained in Section 5.3. As such,
the LBDI(xw, xι) can be calculated using Equa-
tions (23)–(27).

∆n =|G(n)| ·
(
|G(n)| − 1

)
(23)

∆ =
∑
n∈NS

∆n (24)

ι(xw) =
∑
n∈NS

∆n · ιn(xw)

∆
(25)

ρ =
∑
n∈NS

∆n · ρn

∆
(26)

LBDI(xw, xι) =xι · ι(xw) +
(
1− xι

)
· ρ (27)

Where ∆n is the area of a node n and ∆ denotes
the area sum of all system nodes. ι(xw) denotes
the normalized independence metric of all system
nodes and ρ does so for the density. LBDI(xw, xι)
is the result after applying the independence ratio
xι with respect to the density.

It is also possible to calculate an index value for
an individual system node by applying the LBDI
parameters xw and xι to the system node’s inde-
pendence ιn(xw) and density ρn metrics. This is
referred to as the nodal decomposition index NDI,
which is defined in Equation (28). The NDI can be
used to gain insight into the decomposition quality
on a nodal level.

NDI(xw, xι) =xι · ιn(xw) +
(
1− xι

)
· ρn (28)

for all system nodes n ∈ NS.
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Table 1: Independence, density, area and nodal index
for the marked system nodes in Figure 6 of the LB-
HMC decomposition. Results are given for LBDI(xw =
1.0, xι = 0.5) = 0.7719.

n ιn ρn ∆n NDI

0 1.0 0.5278 110 0.7639
1 1.0 1.0000 12 1.0000
3 1.0 0.4286 56 0.7143
6 1.0 1.0000 6 1.0000

5.6 Example

The independence, density, area and nodal index
are given in Table 1 for the system nodes in the LB-
HMC decomposition of the Climate Control System
shown in Figure 2d. The nodal indices are calcu-
lated using a weight ratio of 1.0 and an indepen-
dence ratio of 0.5. This means that the given nodal
indices are the average of their weight independence
and density. It is also visible in Figure 2d that the
independence scores of 1.0 are justified, since all of
the given modules of the system nodes are fully in-
dependent. Because of the fully dense buses in for
nodes {1} and {6}, their respective nodal indices
have the perfect score of 1.

Table 2 shows a comparison of the LBDI value
for the three decompositions given in Figure 2.
The LBDI parameters are kept at xw = 1.0 and
xι = 0.5. The density of the handmade decompo-
sition is significantly lower than the densities ob-
tained using the HMC and LB-HMC algorithms.
Especially the inclusion of the Heater Hoses D in
the bus module is of a negative influence to the
handmade decomposition’s density metric. How-
ever, this may be due to expert knowledge not avail-
able to the algorithms. Even though the density
metric of the LB-HMC decomposition is slightly
lower on average, it outperforms HMC on inde-
pendence metric resulting in a higher overall LBDI
value. Especially the local bus module {C,G, P}
contributes to the lower density metric of the LB-
HMC, which at the same time helps to maximize
the independence metric locally. This is supported
by the values in Table 1, where the resulting inde-
pendence is 1.0 at the cost of a density of 0.4286.

Table 2: Independence and density metrics and
LBDI(xw = 1.0, xι = 0.5) for the three decomposition
methods given in Figure 2.

Method ι ρ LBDI

Handmade 0.7273 0.3580 0.5426
HMC 0.8977 0.5864 0.7420

LB-HMC 1.0000 0.5438 0.7719

6 Case studies

Two case studies are considered in this section,
being the Pratt & Whitney Aircraft Engine and
the Complex Elevator System [24, 25]. The Pratt
& Whitney Aircraft Engine is a much frequented
DSM in the literature, which serves as a benchmark
case. The presented results are compared with
the decomposition obtained by Jung and Simpson
in [22]. Since their modularity index’ approach re-
sembles our nodal index, as presented in Section 5,
the most. The Complex Elevator System is a DSM
that is recently published explicitly as a new chal-
lenging case study to consider.

6.1 Optimization method

In both cases, a Simple Genetic Algorithm (SGA)
is used to tune the parameters of LB-HMC, as pre-
sented in Section 4. The proposed Local Bus De-
composition Index (LBDI) from Section 5 is used
as the fitness function. See Chapter 7 of [26] of an
in-depth explanation of an SGA. This subsection
provides an overview of the SGA used to obtain the
results. The values and bounds of all parameters
have been set empirically, consistently generating
stable results.

An SGA simulates an evolutional process by
evolving a population of individuals. Evolution
takes place using selection of better performing in-
dividuals, cross-over of individuals and mutation of
individuals. Cross-over generates offspring of some
selected individuals and mutation slightly adjusts
the values in some individuals.

The individuals in the SGA optimization routine
are represented by sets of algorithm parameters for
LB-HMC. For HMC, α was bounded between 2 and
3, and β and µ were bounded between 1 and 5.
For Gamma bus detection, the value for γ was also
bounded between 1 and 5.
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The fitness of a individual is given by the LBDI
value for the resulting decomposition that is ob-
tained with the individual as the LB-HMC settings.
The weight fully contributes to the independence
metric using xw = 1 while independence only con-
tributes for 25% of the final score using xι = 0.25.

The initial population consists of 500 randomly
generated individuals, where each LB-HMC pa-
rameter is uniformly distributed within its respec-
tive bounds. After each generation selection takes
place, followed by both blended cross-over and
Gaussian mutation with each a probability of 30%
to generate the new generation’s population.

The tournament selection uses a tournament size
of 3. This creates random groups of 3 individuals
from the current population and selects the best
individual from each group to be part of the new
population.

Blended cross-over generates two new individu-
als, which are blended versions of two ancestors in
the population. The blending ratio of each ancestor
contributing to a new individual is uniformly dis-
tributed up to 50%. The blending ratio of both new
individuals is the opposite of the other. Blended
individuals replace their ancestors in the new pop-
ulation.

Gaussian mutation has a probability of 25% of
changing each LB-HMC parameter. When an LB-
HMC parameter is mutated, the standard devia-
tions differ per parameter as some are more sensi-
tive than others. The used standard deviations are
0.25 for α, 0.5 for β and µ, and 0.25 for γ. Mu-
tated individuals replace their ancestors in the new
population.

This meant roughly 200-250 new unique individ-
uals per generation. The given results are the best
individual after 10 generations. Most simulations
showed no or marginal improvements in LBDI after
5 generations.

The SGA and LB-HMC algorithm have been im-
plemented using Python 3. Performance on a ma-
chine with an Intel Core i5-6300HQ CPU and 8
GB of RAM was passable, with the heavier Com-
plex Elevator Case taking roughly 5 minutes for 10
generations of optimization for a given pair of pa-
rameters for LBDI.

6.2 Pratt & Whitney Aircraft En-
gine

The Pratt & Whitney PW4098 Aircraft Engine is
a much frequented DSM case study [2, 6, 12, 13,
18, 22, 25, 27]. The DSM includes a combination
of the actual hardware dependencies of the engine
and those of the development teams involved with
them. It is a weighted and asymmetric DSM fea-
turing 60 elements, four of which are sometimes left
out as they represent the integration teams and no
individual hardware components. Weak and strong
dependencies are distinguished using weights of 1
and 2, respectively.

Jung and Simpson also considered this case study
with 60 elements in [22]. Their proposed Modular-
ity Index (MI) is discussed in Section 2.2.2. Their
optimization method also uses a genetic algorithm
(GA), which is presented in [28]. In their optimiza-
tion routine, the modular decompositions are the
individuals. Each decomposition is encoded in so
called extended genomes. As a result of this, the
GA itself is the clustering algorithm, without in-
tervention of an algorithm such as LB-HMC.

The resulting decomposed DSM by Jung and
Simpson is given in Figure 7. The results of the
presented optimization routine of Section 6.1 are
given in Figure 8.

In Figure 7, the modules seem rather dense and
independent. However, the density and indepen-
dence metrics used in LBDI nodes are much higher
in Figure 8. A major contributor to this differ-
ence is the way the LBDI treats hierarchical rela-
tionships. The metrics of each system node that
is recognized in the decomposition is expressed in
terms of dependencies between its grandchildren
and not its leaf nodes. A hierarchical decomposi-
tion requires the viewer to view each (sub-) system
as a system-of-systems instead of viewing a single
system-of-modules. Based on the LBDI value, this
indicates that this DSM would benefit from more
levels in its hierarchical decomposition.

The decomposition in Figure 8 is much more hi-
erarchical. Its global bus is slightly different from
the decomposition by Jung and Simpson. Most no-
tably, the Harness has been moved to the third
large sub-system. This may be due to its very
asymmetric dependencies that negatively effect the
LBDI’s density metric, which causes it to remain a
non-bus element during optimization.
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Figure 7: Decomposed DSM for the Pratt & Whitney Aircraft Engine as given by Jung and Simpson in [22].
Achieved LBDI(xw = 1.0, xι = 0.25) = 0.4823.

The LPC, HPC and Shroudless fan related com-
ponents which are in separate modules in Figure 7
can be found in a more hierarchical decomposition
in Figure 8. Even in Figure 7, the LPC Airfoils
and LPC Stator can already be distinguished as
the local bus module they form in Figure 8 be-
cause of their integrative function for all three mod-
ules. Deeper into the hierarchy of this module, the
Shroudless Fan Blades and Fan Exit Guide Vanes
& Cases are accurate local bus modules, too.

The controls and software module that follows
in Figure 7 is not included in that capacity in Fig-
ure 8. In case of the latter, the software components
have been more hierarchically spread out through
the controls and actuation of the Mechanical com-
ponents of the Oil system, Diffuser, Fuel Nozzle,
Ignition, Burner and so forth. This may indicate
that the single set of parameters for LB-HMC are
not as adequate for this third sub-system as they
are for the other sub-systems.
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Figure 8: Decomposed DSM for the Pratt & Whitney Aircraft Engine. Achieved LBDI(xw = 1.0, xι = 0.25) =
0.7796 with LB-HMC parameters α = 2, β = 4.223, µ = 2.385 for HMC and γ = 2.046 for Gamma bus detection.

The LPT and HPT modules at the lower right
in Figure 7 can be found in a hierarchical decom-
position in the middle of Figure 8.

Following from these observations, the difference
in the LBDI is best explained by the difference in
hierarchical depth of both decompositions. The
global outline of both decompositions is still sim-
ilar, since most components end up in the same
module or sub-system. Especially the third sub-
system in the optimized decomposition seems to

leave room for improvement. This may be due to
the single set of parameters for HMC that is re-used
for every sub-system when creating decompositions
with the LB-HMC algorithm.
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6.3 Complex Elevator System

The Complex Elevator System is a symmetrical
DSM with multiple dependency types [24]. It
describes a machine-room-less elevator called the
‘Kone MonoSpace’. It is designed for low- to mid-
rise buildings and uses permanent-magnet electric
motors. The five defined dependency types are spa-
tial, material, mechanical energy, electrical energy
and information. It was published in a variation
of 175 elements and a less granular variation of 45
elements. Granularity defines the ‘grain size’ or de-
tail of the model of a system [29, 30]. In case of a
DSM, this determines what its elements are con-
sidered to be. The less granular variation collapses
a set of pre-defined modules and therefore contains
less detail of the system.

The weights assigned to each dependency equal
the number of active types for each dependency in
the given DSM. Another way of interpreting this
is that the weighted DSM is the sum of five bi-
nary DSMs – one for each dependency type. The
number of active types in the given DSM varies be-
tween zero and three. The given optimized result
in Figure 9 considers the fully granular DSM of 175
elements.

The complexity of the elevator becomes apparent
in Figure 9. It shows two major sub-systems, rang-
ing from the Car guide rails to the Pit safety 1 and
from the subsequent Machinery 8 to the Landing
signalization. From this decomposition, the num-
bered Car components seem to tie these major sub-
systems together. The Car component 2, Car com-
ponent 14 and Electrical system 13 are in the global
bus module, meaning their element degrees (num-
ber of related dependencies) are significantly higher
than those of all other components.

The first major sub-system consists mostly of the
components related to Counterweights, Counter-
weight slings, Rope terminations, Pit components,
Car floors, Car doors, Landing doors and Safety
measures. Therefore, this first major sub-system
can be seen as the elevator car’s supportive compo-
nents and connections to the outside world, consid-
ering both the Landing and Car doors. The Car
guide rails and Counterweight screen are detected
as the bus modules, integrating these more support-
ing functions of the elevator. On a slightly deeper
level, the Counterweight guide rails and Bundle 2
are detected as the local bus modules. This seems

a natural assignment, as guide rails, screens and
bundles can interdepend with many components.

The second major sub-system consists mostly of
the Drive panels, Machinery, Control panel com-
ponents, Interiors, Electrical systems and Signal-
ization. This combination can be seen as the user
interaction with the elevator interacting with the
machinery to drive the elevator. The dense block
consisting of Car components and Interior stands
out, revealing a strong dependency density. The
second major sub-system is a very integrated sys-
tem overall considering its high dependency den-
sity. The lack of bus modules emphasizes this, as
none of the components have a high enough element
degree for the given γ.

Further inspection of the results show that most
high ranking decompositions with a high LBDI con-
tain many hierarchical levels. Introducing another
hierarchical level can have a major impact on the
index value. An example thereof is the final element
in the DSM, being the Car electrification 2. Since it
has only a single dependency from and to the global
bus module, it was not grouped with the other non-
bus elements at the global level. This caused both
previously discussed major sub-systems to end up
in a separate grouping, essentially pushing them
down a hierarchical level. Similar examples can
be found in Positioning System 1, Pit safety 1,
Counterweight w/ hw and Installation accessories
1. Considering the complexity of the Complex Ele-
vator System, further studies could restrict the de-
composition analysis to one dependency type at a
time.

6.4 Discussion

Detecting decompositions with buses on a local
level shifts from a system-of-modules towards a
system-of-systems approach. The implementation
of the LB-HMC algorithm uses the same set of pa-
rameters for all sub-systems for which it (re-) calcu-
lates the local decomposition. This results in sensi-
ble decompositions paired with the LBDI optimiza-
tion, but it does not do justice to the system-of-
systems approach completely. The parameters are
optimized for all sub-systems at once, as opposed
to finding locally optimized sub-systems.

The varying tree depth and number of children
per node are challenges related to this that prove
hard to overcome. The level of detail included in
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Figure 9: Decomposed DSM for the Complex Elevator System. Achieved LBDI(xw = 1.0, xι = 0.25) = 0.7796
with LB-HMC parameters α = 2, β = 4.387, µ = 4.699 for HMC and γ = 4.080 for Gamma bus detection.

the DSM is limited and its elements need not be
of the exact same depth in the tree. When clus-
tering bottom-up (agglomerative clustering such as
HMC), the varying tree depth obfuscates what the
actual influence on higher level systems will be.
When clustering top-down (partitioning), it is not
yet clear what the grandchildren of a system will be
after subsequent partitioning. Both prevent local
LBDI optimization during the agglomerative clus-
tering or partitioning process.

Especially equalizing the size of modules and lo-
cal decomposition refinements could yield better
decompositions. Equalizing the size of modules
can be rewarded using a metric similar to Model
Description Length (MDL) as described in Sec-
tion 2.2.1. The effort-based approach of MDL could
also be used to steer the amount of hierarchical lev-
els in a decomposition. For implementation in the
current index, that would require these to be de-
fined as normalized metrics.
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7 Conclusion

This work presents a new algorithm that calculates
hierarchical decompositions with local bus modules
for a DSM. Additionally, a novel index is presented
that can be used to rank different decompositions
for a DSM by their decomposition quality.

The algorithm relies on both a hierarchical clus-
tering algorithm and a bus detection algorithm. It
creates an initial hierarchical decomposition that
is subjected to a top-down bus detection routine.
If bus elements are found for some sub-system in
the decomposition, both the bus elements and re-
maining non-bus elements are re-clustered. The re-
sults of this re-clustering are inserted into the ini-
tial decomposition such that it contains a bus mod-
ule on a local level. The algorithm can be imple-
mented using any hierarchical clustering algorithm
and any bus detection algorithm. The given im-
plementation uses Hierarchical Markov Clustering
and Gamma bus detection and is called LB-HMC.

The proposed Local Bus Decomposition Index
(LBDI) requires a DSM decomposition as a rooted,
directed, labeled tree and a DSM’s adjacency ma-
trix as input. Multiple sub-systems can be recog-
nized in a decomposition. The index value con-
sists of a module independence metric and a mod-
ule density metric that is calculated for each sub-
system. Sub-systems with more elements con-
tribute more to the final index value.

A Simple Genetic Algorithm (SGA) is used to
tune the algorithm parameters of LB-HMC for both
the Pratt & Whitney Aircraft Engine and Com-
plex Elevator System case studies to maximize the
LBDI. The obtained hierarchical decompositions
with local buses show significant improvements in
terms of the new decomposition index when com-
pared to the results for the Pratt & Whitney Air-
craft Engine in [22]. The Complex Elevator Sys-
tem’s results show that the SGA yields insightful
results for larger matrices, as this DSM features 175
elements.

The LB-HMC algorithm shows promising perfor-
mance, despite the a addition of a local bus search
routine. The SGA implementation in Python 3 cal-
culated roughly 3000 decompositions for this DSM
in about 5 minutes time on a system with an Intel
Core i5-6300HQ CPU and 8 GB of RAM.

8 Future work

The proposed algorithm currently yields hierarchi-
cal decompositions with buses on a local level. This
shifts the paradigm from a system-of-modules to-
wards a system-of-systems approach. The imple-
mentation of the algorithm uses identical parame-
ters for all sub-systems it (re-) calculates the local
decomposition for. This does not do justice to the
system-of-systems approach completely. Local op-
timization of parameters may result in decomposi-
tions of higher quality.

The proposed index is sensitive to the introduc-
tion of more hierarchical levels in any sub-system.
Sometimes, the addition of a single element to a
sub-system drastically changes the index value be-
cause of the change it induces in the hierarchy of the
decomposition. This effect may be reduced by im-
plementing a metric similar to the Model Descrip-
tion Length (MDL) metric [13]. An effort-based
approach similar to MDL could help to equalize the
size of modules in each sub-system and the num-
ber of levels in the hierarchical decomposition. As
such, it could result in a more robust index value.
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