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Abstract: We address the control synthesis of hybrid systems with discrete inputs and outputs. The
control objective is to ensure that the events of the closed-loop system belong to the language of the
control requirements. The controller is sampling-based and it is representable by a finite-state machine.
We formalize the control problem and provide a theoretically sound solution. The solution is based on
solving a discrete-event control problem for a finite-state abstraction of the plant.
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1. INTRODUCTION the hybrid plant contains reset maps. With respecttisthera

Motivated by applications in the area of high-tech system&t al. (2002); Moor et al. (2002) the main differences are that
in particular control of printers, Petreczky et al. (2008b), wave consider hybrid systems as opposed to continuous ones,
are interested in the following control problem. The plant i§nd we address partial observations. In addition, we do not
a hybrid system which is subject to discrete disturbances aRéPPose a general purpose finite-state abstraction, rather the
control inputs and which generates discrete outputs and inter4PPosed abstraction is intended as a vehicle for solving the
events. The disturbances are imposed by the environment gRgcific control problem. The results of Raisch and O'Young
the control inputs can be used to influence the system behavigk995); Moor and Raisch (1999); Raisch (2000) address a
The desiredcontroller can read the outputs and it generate§roblem which is quite different from the one considered in
control inputs. Furthermore, the controller should be realizabl8is paper. The approach of the paper resembles Alur et al.
by a finite-state machine, and it is activated at equidistaf®000); Tabuada and Pappas (2005); Fainekos et al. (2007);
sampling times. The control objective is to ensure that th@eltaetal. (2005). However, the abstraction notion of this paper
sequences of internal events generated by the plant satisfy gl the problem formulation are different. The control problem
control requirements of this paper is different from Philips et al. (2003). In addition,
Contribution We present a mathematical formulation of théN® computation of the finite-state abstraction proposed in this
control problem above. We also propose the following solutio@Per is quite different from that of the papers cited above.

Step 1 Compute an abstraction (over-approximation) of th&utline of the paper In §3 we state the control problem

symbolic (event) behavior of the plant, such that the abstral€ Want to solve. The reduction of the hybrid problem to a

tion has a finite-state representation iscrete-event one is discussedh In §5 the class of hybrid

Step 2 Solve the related discrete-event control problem fopYStemS of interest is defined and the computation of a finite-
the finite-state abstraction. The solution is a discrete-eveR@ie abstraction of the hybrid plant is discussediéinas an
controller representable by a Moore-automaton. Interpret thi/Stration, we present an example.
solution as a controller for the original plant.

We prove that the procedure above is theoretically sound. The . . .
discrete-event control problem of Step 2 can be solved usi neral notation We use the standard notation and terminol-

game theory, see Gdel et al. (2002) or, under additional© y from automata theory Eilenberg (1974). Debe the set of

assumptions, using classical supervisory control, see Petrec#85itive integers including zero. L&t be a finite set, referred
et al. (2008a). We also present a procedure for constructin%tﬂ?aS thealphabet X denotes the set of finitetrings (words)
finite-state abstraction. The procedure can be made effectivs,€léments ob:. The empty word, denoted by An infinite
but it may be computationaly expensive. word ovng is an mﬂmtese_qyence = ajaz---ag- - with
Related work To the best of our knowledge, the contribution® € 2% € IN. The set of infinite words is denoted By'. The
of the paper is new. Control of hybrid systems using finitel—ength of a (in)finite word is den.ote.d.by; : 1T w is an infinite
state approximation is a classical topic, Gonzalez et al. (ZOOi’Y,Ord' then\w| = ~+oo. For any (imfinite Word."' and for any
Cury et al. (1998); Brstnera et al. (2002); Moor et al. (2002);" € N (in casew is finite word, for any0 < i < [wl), wy
Koutsoukos et al. (2000). The main difference with respeéj[enotes the finite wprd formed by.the firstetters ofw, 1.e.
to Gonzalez et al. (2001); Cury et al. (1998); Koutsouko§'l:i — @192 """ i If i = 0, thenwy.; is the empty word. The

et al. (2000) is the presence of partial observations, that t@fé of non-negative realsg, . . .
generation of events is not synchronous with inputs, and thi{oore-automata A Moore-automator{Eilenberg (1974)) is a

tuple A = (Q,1,Y,4, A, o) where@ is the finitestate-space
1 This work was partially supported by the ITEA project Twins 05004, of A, I is theinput alphabebf A, Y is theoutput alphabebf

2. PRELIMINARIES




Sequential
U+ controller ¢

control inputPp,

A,d:Q x I — Qisthestate-transition mapf A, A : Q — Y
is thereadout mapof A, andqy € Q@ is theinitial state of A.
The Moore-automatod is arealizationofamapg : I* — Y,
if forall w = uqus---ug € I*, k > 0anduq,us,...,u, € I, disturbance®y,
d(w) = Ngx) whereg; = 6(q;—1,u;) foralli =1,2,... k. Fig. 1. Control architecture
Monoid,automataRecall from Berstel (1979); Eilenberg (1974 . . .
that amonoidM is a semi-group with a unit element. Example n order to define the input-output behavior of the plant for-
of monoids are the set of all word* and the cartesian product M2lly, we need the following notion.
X*xY* whereX andY are finite. Recall from Berstel (1979); Definition 4. Let £ be a finite set and let. ¢ E. Consider a
Eilenberg (1974) that finite-state automaton on a monald,  (in)finite timed sequence of elementsiof
ab_br_eviated as DFA, i_s atuple= (_Q, M, E, F, qo) whereQ is s= (e, t1)(ea,ta) - (g, tr) - 1)
gflnlte setofstq;esM |sthe monoid (_)ﬂﬂpyt;E - QxMxQ where < t; < t; < ty < -+, eis1 € E, ti1 € R, for
is a state-transition relation, whefeis a finite set)' C Qis ;¢ N ; < |s|. Here|s| is the length ofs, and|s| = oo if
the finite set of accepting stateg, € Q is the_|n|t|al state. ¢ is an infinite sequence. [§| = +oo, then we assume that
An elementm € M is accepteQ)y T if there exists elements SUDen tis1 = -00. We can identifys with a map
m; € M; and states;; € Q, i = 1,2,...,k, k > 0 such . eir1 € E if t = t;,, for somei € N
that (¢;, mi,qiv1) € E fori = O,l,...,/_ﬂ -1, Ik € F g:Ry ot— 1 otherwise (2)
andm = mymeo---my. The setL C M is recognized by
T, denoteq byL(T'), if L consists of precisely those elementsmaps is denoted b?r. Denotethe sequence of elementsiof
m € M which are accepted Hy. induced bw by UT(q) — * w

L . Vg DY (9) = erea €k e E*UEY.
Sequential input-output maps will be used to model the , , ,
discrete-event abstractions of hybrid systems. The concep@: the timed-event functiop takes values in the event set
below are discussed in more detail in Petreczky et al. (2008a)° at isolated time instances, and the valueencodes the
Definition 1. A multi-valued mapR : ©* — 2% XY is called absence Qf events at a certain time instance. By applying the
a asequential input-output mapié above definition taf' € {E., Eq, E,, E;}, we obtain the sets
(1) R(€) = (e, ¢), and for alls € *, R(s) is a finite and non- PE., Pr,, P, Pr, describing the time signals with values in
empty set. Furthermord is length-preservingn its X -valued inPuts, disturbances, outputs and internal events respectively.
component, i.e. ifo, 8) € R(s), witho € X* ando € Y*,then  Definition 5.(Input-output map of the plant)The input-output
the length ofs ando are the same, i.és| = |o|, map of H is acausalmapvy : Pg, X Py, — Pg, X Pg,.
(2) R is prefix preservingi.e. for each words € ¥* and letter By causality ofvy we mean that the responsew depends
a € %, if (z,y) € R(sa), then there exist € X andy € Y*, only on the past inputs and disturbances, i.e. for any two inputs
€ X*, § € Y*suchthat = &z, y = gy and(z,9) € R(s), i € Pg,, 'disturba_ncedi € Pg,, and response&;, 6;) =
(3) R is non-blocking i.e. for eachs € ¥, a € %, (z,y) € vH (i di), i = 1,2, if dl‘[O:t] = dz|po,9, u1]j0,) = uz[o, then
R(s), (zz,yy) € R(sa) for somez € X,y € Y*. - 01(t) = 02(t) andoy (t) = 0o(t), forall t € R..
Definition 2. A DFA T = (Q, M, E, F, q9) defined over the Definition 6. A hybrid controlleris a magC : Pg, — Pg..
monoid M = ¥* x X* x Y* is called aquasi-sequential ] ] )
transducer if (1) F = Q, i.e. all states are accepting) the Next, we define when the feed_back interconnection of the plant
state-transition relatiof is a partial mapf : Q x ¥ x X x 11 and controllelC is mathematically well-posed.
Y* — Q, (2) for each statg € ) and lettera € X there exist Definition 7. The interconnection off andC is well-posed

Hybrid
plant #

internal event$g

The mapy above, is called Eme-event magr he set of all such

aletterr € X andy € Y* such thatt)(q, u, =, y) is defined. if for any disturbancel € Pg, there exists a unique input
Definition 3. The sequential input-output mag : %* — € Pr,, andresponsese Pr,, 0 € P, such that

2X"xY" is quasi-recognizabléf there exists a quasi-sequential (0,0) = vu (u,d) andu = C(o) 3)
transducer which recognizes the graph/dfi.e. which recog- Next, we define the relevant aspects of the closed-loop behavior
nizes the sef(u, z,y) € ¥* x X* x Y* | (z,y) € R(u)}. of the system. First, in order to avoid technical difficulties, we

Note that the subset af* x X* x Y* recognized by a quasi- restrict attention to disturbances where at most a fixed number
sequential transducer is always a sequential input-output magf disturbance events occurs within a sampling interval.
efinition 8. Denote byA > 0 the sampling rate. Let € N.
The set of functiong € Pg, such that on any interv@d A, (i+
3. CONTROL PROBLEM 1)A], i € N the number of events af is not greater thap. is

. . . : . denoted byP2 . Thatis,g € P£ ,, if and only if for each
The plant of interest is a hybrid system which reacts to discrete- E.u E,p
P y y (6N, card{e = g(s) € E| s € ((i — 1)AiA)} < p.

valued control inputs and disturbances, and generates discrét
valued outputs and internal events. We view the inputs arf@efinition 9. If the interconnection of/ andC is well-posed,
outputs as discrete events. Thus, the control inputs are eveliten letthe closed-loop language(H/C) be the set of words
generated by a potential controller, the disturbances are evek§(6) € E; U Ey for all internal event responsésc P, for
generated by the environment. The outputs and internal evemtbich there exist an input € Pg_ a disturbance! € P,%d’u,
are events generated by the plant. The only difference betwegnd outpub € Pg, such that (3) holds.

outputs and internal events is that outputs are visible (i.ge  1.(#/cC)is the set of sequences of internal events generated
detectable by sensors), while internal events are not. by the interconnection of the plafi with the controllerC. We
Notation 1.(Plant and events)We denote the plant bj7. We  study controllers which have a finite-state representation and
denote byE. the set ofcontrol inputs E,; the set ofdistur- are activated at fixed sampling rate > 0. The controller can
bances F, the set ofoutputs E; the set ofinternal eventsWe only detect the set of outputs which occurred in a sampling
assume thak., £, E,, E; are finite sets. interval. The formal definition is as follows.



Definition 10. LetU = E. U {_L} be thesampled input setet  Definition 15. The closed-loop languagd.(R/¢)) C Ef U
O = 2P be thesampled output seA sequential controlleis  E¥ of the interconnection of? with the sequential controller
amapg : O* — U which has a Moore-automaton realization. ¢ : O* — U is the set of all word$ € E; U E¢ for which

Definition 11.(Sampling-based controllerfor a sequential conthere exist letters; € D, 0; € O, u; € O, i € N and indices
troller ¢ let thehybrid controllerC,, : P, — Pp, associated Ko < ki < ---k; < such thabup;ey ki = [0], andVi € N,

with ¢ be such that for ab € Pg,, and for allt € R, (0102 -+ 04,01.1,) € R((u1,d1)(ug,dz) -+~ (us,d;))
C0)(t) = { #(S152---Sg) ift = k;_A for,keN u; = ¢(0_102 S 0i-1)
L otherwise Problem 2(Discrete control problem)For the plantR, and
whereS; 1 = o(((iA, (i + 1)A]) N E, for alli € N. for the control requirementss C E; U E¥, find a sequential

_ _ _ _ controller¢ such that(R/¢) C K holds.
Notice that the interconnection 6f, and H is well-posed. The  £or more details on the discrete-event control problem above,
control problem of interest can be stated as follows. see Petreczky et al. (2008a). A necessary condition for effective
Problem 1(Sampled-data control)-or a specification language;o|ytion of Problem 2R is that is quasi-recognizable, i.e. it is
K < Ef U Ey and a sampling rat& > 0, find a sequential ecognized by a quasi-sequential transducer.
controller ¢ such that for the associated hybrid controlfer  Thegrem 1(Hybrid vs. discrete control)lf ¢ is a sequential
the closed-loop language satisfie& /Cy) C K. controller, thenL(H/Cs) C L(Rx/®). Hence, if¢ solves
Note that the results of the paper can easily be extended so tRaoblem 2 forR = Ry, andK C E; UEY, then the associated
the specification language includes events fiopu £, U E,.  hybrid controllerCy solves Problem 1 foff and K.

In fact, it can be shown that the set of prefixedéfR; /¢) and
4. SOLUTION OF THE HYBRID CONTROL PROBLEM ¢ L(H/C,) coincide. Hence, if< is a limit of a prefix closed

In this section we present the solution of Problem 1. The maitft Of finite strings, i.eK is a safety requirements, theh
idea is to reduce Problem 1 to a discrete-event control problefP!ves Problem 1if andnly if ¢ solves Problem 2 foR = Ry

To this end, we model the symbolic sampled-data behaviqpotice thatR;; needs not admit a finite-state representation
of the plant as a discrete-event systéty, which reacts to gyjtable for solving Problem 2. The remedy is to solve Problem

sampled inputs and disturbances and generates sampled outpuigt for R ; but for an quasi-recognizable abstractionR.
and internal events. The input set®f; is U, the output setis The construction of the latter is discussedn

O, the set of internal events i5;, where the/ andO are as in - . o

Definition 10.In order to defin&;, we need the following. ]D%eigr;g?égéﬁ?ﬁg%ﬂﬁ?ﬁ%i ?fe %L:E;Tltlil elrl(%}txo%tﬁ}'ﬂtr:relap
Definition 12. The setsampled disturbances @t is defined inclusion Ry (s) C R(s) holds.

asD = |J_, E}, i.e. D is the set of all words oveEl; of  Theorem 2.Assume thatR is an abstraction oRy. Then for
length at most:, wherey. is as in Definition 8. any sequential controlles, L(Ry /¢) C L(R/#). Hence, ifp
Notation 2. Let g € Pg be of the form (2). For alt € R*,  solves Problem 2 foR, then¢ solves Problem 2 foR ;.

let UT(g,t) € E*, be the sequence of eventspfip tot, i.e. ; :
UT(g,t) = exes - er if L € N is such that eithel < |s| and We get the following procedure for solving Problem 1.

i 141 _ l 1. Use§5 to compute a finite-state abstractiBrof Ry
t€ (Xrmrtr 2oy il Orfs| = landt € (35, tr, +o0). 2. Compute a solution to Problem 2 fét and the original
Definition 13. The sequential input-output ma@gy of H is control requirements.

the mapRy : (U x D)* — 297*F. defined as follows. 3. Compute the hybrid controllet, associated with.
Rpu(e) = {(¢,€)} and for each sequence of sampled inputs

w1, U, . .., ur € U anddisturbances;, ds,---d, € D,k >0, 5. FINITE-STATE ABSTRACTION OFRg
(0102 -+~ 01, 0) € Ry (w1, dv)(uz, da) - - - (ug, dy)) In §5.1 we define the class of hybrid systems of interes§51a
for someoy,02,...,0, € O, ando € E}, if there exist we present the definition the finite-state abstractioR pf

g € Pg,,0 € Pg,, 6 € Py, such thafo, 6) = vy (u,g), 5.1 Hybrid systems

Ve R, :u(t) = { i ifttth (i —1)Afori=1,2,....k  Definition 17. A discrete i/o hybrid systerf is a tuple
otherwise
(SH7 5; Ais Aoy {fQ7 Ru7q7 (bq@}qu,ueEmeeEquoy hO) (4)

o = UT (0, kA ;= — DA IA]) d; = UT(g;, A . . .
aher%g»((%k: ;’(?2?1.0’_1)2()((@ eI)R ’Zfor])alcllli _ EJ 2(9“ /2 e Events E, is the set ofdisturbances E. is the set of
' ’ + T control inputs E, is the set ofoutputs E; is the set of

The mapRy; is a sequential input-output map of Definition 14.  internal eventsandE,, Eq, E;, E, are finite sets.

Intuitively, Ry is the result of composing with the interfaces ~ ® State-spaceSy = @ x X is the state-space df. Here

converting outputs frorPg , internal event signals fromy, , Q = Q. x Qq is thediscrete state-spaasf 1, Q), Qg are

disturbances frorP4 . to sequences i®*, EF and D*, and finite sets. The set’ C R™ is thecontinuous state space
d> T ! . . . .

with the interface which convert sequenéésto mapsPy. . A is a closed set with non-empty interiort X' 7 0.

e Discrete-state transitionis determined by the transition
functionsd, : @ X E. — Q¢, 04 : Q X (EqU E;) — Qq.
Continuous dynamicsis determined by continuous, glob-
ally Lipschitz vector fieldsf,. : R* — R", ¢ € Q., and
resetmaps, ,: X — X,q € Qandu € E..

o , o e Event generationis determined by guardé,. C X,
Definition 14. A d|screte—even£ plgnts a sequential input- g€ Q,ec E,U E;, and by discrete partial readout maps
OUtpUtmapR: (UXD)**}2O XEi‘ AOZQXEd%EO,AiZQXEdHEi.

In order to solve Problem 1, we can viely as a discrete-
event plant, and solve a discrete-event control problenkfer
as a plant and( as a requirement. The discrete-event control ®
problem is as follows. The controllers of interest are sequential
controllers. The plants of interest are defined as follows.



e ho = (g5, qd,70) € Sg is the initial state of the system.

The systemH is a hybrid system van der Schaft and Schu- e
macher (2000) subject to the following restrictions. The set of
discrete eventi¥ = E.UFE;,UE,UE;. Anevente ¢ E,UE;

is generated by{ either if the continuous state crosses a guard
set, or when an event fro; arrives. Events fronf,. U Ey

are generated by the controller/environment. The continuous
dynamics in the discrete statg’, ¢*) depends only og¢. The
state-transition rule for a discrete state= (¢°,¢?) € Q is as
follows. If an eventu from E. arrives, the new discrete state
becomes(d.(q,u), q?). If d € E, arrives, then the discrete

z(t) = foe(z(t—r)), wheref,. is the flow for timer > 0

as in Definition 18

let» > 0 be such that for alk € (¢t — r,t), d(s) = L,

u(s) = Landz(s™) & U.cp, Py(s—),er 1-€. NO distur-
bance, input or internal event takes place on the interval
(t —r,t). Thenq?(s) = q%(t —r) forall s € (t — r,t).

If d(t) = e € Ey, i.e. a disturbance event occurs at time
t, thengd(t) = dq(q(t™),e). If d(t) = L, andz(t™) €
Dy(t-). for somee € E;, thengd(t) = 64(q(t7),e).

If both d(t) = L andz(t™) & U.cp, Pqt-).er then

q'(t) = ¢*(t7).

Definition 20. Define theinput-output mayof the hybrid sys-

state changes t@;°, d4(q, d)). If an evente € E; occurs, then ,
the discrete state changes (i, 64(q, ¢)). For an event from ©MH induced by staté € Sy asvp i : P, % Pr, — Pr, %
E, the discrete state does not change. The reset maps for/ag SUch that for any input € P, and disturbance € P,
eventu € E, are specified by, ,. For all the events from v n(u,d) = (o,0) if the following holds. For each € R
E,UE,UE,; the corresponding reset map is the identity. For th%on&der_the current staggy (h, u, d)(t) = (q(),=()). Recall
formal definition of the state evolution, we need the following.Tom Definition 19 the definition of(¢~) and:(~). Then
Definition 18.(Flow of f,c). For any timet € R, and for any ec B, ifx(t™) € @44 andd(t) = L,
q° € Q. define theflow féc : X — X of f, as follows. For andt > 0
anyzp € X, consider the initial value problem Ao(q(t7),d(t)) if d(t) € Eq,t > 0and

% = fye(2) andz(0) = 2o (5) Ao(q(t™), d(2)) is defined
Since f,- is continuous globally Lipschitz, the solution is L otherwise
defined on on the whole time axi®; and there exist§ = e€ E; ifx(t”) € - . and
B(q°%, 20) € [0,400] such that for alk € [0,5), 2(t) € int X d(t)=Landt >0
and if 3 < +oo, thenz(8) € 9X, i.e. () belongs to the &(t) = { \;(q(t™),d(t)) if d(t) € E4,t > 0and
boundary ofY. Then fL.(z) = { 2(t) ift<p Ai(q(t™),d(t)) is defined

o(t) =

z(B) FB<t<4oo0” 1 otherwise
Notice that for any € 90X, fi.(20) = 20, i.e. the continuous :’Xg %?t?gtgtgtgj t:fe;lnput-output map ., Of H induced by
state evolution stops on the boundary &f The following o0 ) )
assumptions will be used in the rest of the paper. Informally, if there are no disturbances, then an output or
o internal event is generated if the continuous state crosses a
A.l1. Disjoint guards: For any¥ € {E,, E;} andg € Q, guard. If a disturbance arrives, then an output (resp. internal
Ver #ex €3 (bq,il NPy, =0.in event) is generated according to the readout mafresp.);).
A.2. Foreacty = (¢°,¢°) € Q = Qc X Qu, ¢ € E,UE; there 55 construction of a finite-state abstraction/of
exist smooth maps, . : R" — R, such that

%,e C{zeintX| hqvef) =0}, and ) ducer, which recognizes an abstraction/tf. Below H de-
if ©gc # 0, thenve € R™ : grad(hg.c)(x)fye(z) > 0. npotes a hybrid system of Definition 17 satisfying Assumption
A3. Foranyg € Q, d € E4, M\i(q,d) is defined. Moreover, if A.1- A.3. In addition, we need the following.
e = \i(g,d), thenforanyg € Q, &, = 0. Definition 21. Let R(H) = | J;-, @ x H;, such that

: — _ A A
Assumption A.1 ensures that at most one output and at most oHe = {zo} andHiy = H; U{f32(x), fye(Rus(x)) | € Hi,
internal event is generated at any time instance. Assumptigh € Q.,s € Q,u € E.},Vi € N
A.2 ensures that only a finite number of outputs or interna{herez, is the continuous component of the initial statethf

events are generate.d on any f|n|te.t|me interval. _Assumptlo%sumption 11n the sequel we assume tHat i) is finite.
A.3 allows to recognize whether an internal event is generate

Below we present the definition of the quasi-sequential trans-

by a discrete readout map or by crossing a guard. Next,
define the state evolution and input-output behaviak of
Definition 19. For any initial stateh = (¢, x), inputu € Pg,
and disturbanceé € Py, the state-trajectory is a map
§H(hauad) : R-‘r S2t— (q(t),],‘(t)) € Su
where the state componenmt§) = (¢°(t), ¢%(t)) € Q z(t
X satisfy the following. Ift > 0, then letg(t™) = limgq, ¢
i.e.q(t7) is the left hand-side limit of(s) at timet. Let¢¢(
andq?(t~) be theQ..- andQ,-valued components @ft ), i.e.
qt™) = (¢¢(t7),q%(t7). If t > 0, thenz(t~) = limgy, 2(s),
i.e.z(t7) is the left-hand side limit at of the maps — z(s).
Then,(¢(0),z(0)) = h = (q,x) andvt € Ry, t > 0,

o if u(t) =u € E., theng®(t) = §(q¢(t),u) andx(t) =
Ry g~ (x(t7)). If u(s) = L on the interval(t — r,1]
for somer > 0, theng®(t) = ¢°(t — r) = ¢¢ and

we(H) will be the state-space of the to be constructed ab-

straction. Later on we formulate conditions for finiteness of
R(H). The main idea behind the construction of the sampled-
time abstraction is that it is enough to look at states which are
reached at sampling times, i.e. at a subset of elemerRs Hf).
Moreover, the events generated in a sampling interval can be
estimated by using the sampled state.

Definition 22. For anyq = (¢%,¢%) € Q ande € E; U E,,
theguard abstraction predicat®, . C X is eitherP, . = 0, if

e = A(q, d) for somed € E,, or

Ppe={2 € X | hge(z) < 0andhgc(f2(z)) >0}  (6)
Informally, P, . contains those continuous states, started from
which the guard corresponding ¢as crossed withim\ time.

Definition 23. Let P = {P, . }4c0.ccEuE, the collection of
sets from Definition 22. Define tHaite-state abstractiod o
as a quasi-sequential transducer



Ha =(R(H),(U x D)* xO* x Ef,E,R(H), ho) where and the maps defining the guards are affine, i.e.

Initial state ho = (g5, q¢, zo) of Ha coincides with that of7. X={zecR"|nlz—-b<0,i=1,2,...,K}
State transition map £ : R(H) x (Ux D)xOx E} — R(H) Rug(z) = My gz +bug, Vo €int X
is defined as follows. For eaehe U,d € D,o0 € O andé € L o d Vr € R"
E?, E(hy,u,d,o,0)is defined andz(h, u, d, 0, 6) = hs if and 0.e(¥) = gg, v +dge, VT €
only if h; = (q;,7;) € R(H) whereg; = (¢5,q%) € Q. X Qq - T
andz; € X, i = 1,2, and the following holds. foe (@) = Agew + Z Bye j0q.j(rge jz), Y eR"
(1) The state componeng§ andxz, are computed as follows. J=1
¢5 = 0c(q1,u) andas = f2(Ruq (21)) ) O+ NS Ggr(0) < 20 402, Vo ER

Here, foru = L, 8,(qy, 1), Ru.q, (1) are the identity maps, i.e. 1OF MatNCesMy,q, Age € R, VECtOrShu, g, 7ge 5, Bye i 9a.e-
0c(qr, L) = qf andR | 4 (z1) = 21 T ed R", and scalarsdyc, bi, pi1, p2,71,72 € R, ¢ =
(2)Assumetha‘d =ereg-re, 0 <k < W, €1,€2,...,€ € (.qcvq ) € Qv e € B UE, u € E 1 .: 1725"'7K’
E,. Then the sequenceis of the formé = z1zo - - 2z, where J = 1,2,...,m. The mapspee ; : R — R, j = 1,2,....m

k<1< |QallE:| +kandz, z,...,z € E; U{e} and the are piecewise-affine, continuous, globally Lipschitz.

following holds. There exists indices < is < --- < i, € [If H satisfies Assumption 2, then the reset maps are and the
{1,2,...,1} and discrete states € Q,i = 0,1,...,] such mapsh, . are computable. The solution of (5) can be computed

thatsy = (¢$,q¢), s; = gz and foralli = 1,2,...,1 using numerical integration methods. Hence, if we can detect

¢ e fact, the definition off o can be modified so that it is enough to
. fi;= = NS y U . A g
(92, 0a(si-1, er)) Ifolr Sg&g:d:zll 9 /\z(s’kl’ r) detect if the solution of (5) has crossed the boundary the interval
B ®) (0, A] (i.e. the precise point where the boundary was crossed is
not needed). The latter is easy if the sign of eagly,.(z),

(@S, 8a(si—1, 21)) if Rug, (1) € P andi ¢ I reaching the boundary of, then the flow is computable. In
) 1—1y*~ u,q1 i—15%i
S; = {

herel = {iq,i9,...,1}. L
W (i 2, e} i=1,2,...,K is independent of. Due to the lack of space,
(3) The outpubo C 2P~ is the set of events € E, such that we omit the details. The finiteness &(H) can be checked
Ry g (21) € P, . forsomei € {1,2,...,1}\ I, or effectively using Theorem 4 and the following.
Ao(8i._1,¢.) = eforsomer =1,2,... .k ©) Proposition 1. Assume thatH satisfies Assumption 2. If for

Intuition The states oH a are those states @¢f which can be Som%] €f{l,... ’{S}’ c>0, forTaII v € X, q=(¢" ql.i) €Q
reached fromh, at sampling times. By assumption, this set id D) nj (Agew + 5120 pi(Byeirge 1@ + YiBge 1)) > ¢ i = 1,2,
finite. A state transition off » associated with a discrete input(2) If « € int X, thenn (M, gx — 2 + by 4) > 0, Yu € E.,

u, disturbancel € D, outputo € O and sequence of internal thenV (z) = (b; — n] x) satisfies Theorem 4.

eventso € E} is obtained as follows. If the current state ofNotice the resemblance of Proposition 1 to Habets et al. (2006).
Ha is hy then the new statk,,is the state of{ reachable from Note that quadratic Lyapunov-like functions satisfying Theo-
hy in time A, under the following conditiong;1) H receives rem 4 can also be obtained as solutions of suitable LMIs.

input event at time0, and no input after thaf2) H receives a

disturbancey, such that the sequence of eventg oh (0, A] is . 6. ILLUSTRATING EXAMPLE

d, (3) 6 is the sequence of internal events generated bwyhile Below we illustrate the theory by an example related to a
moving from &, to hs, (4) o is the set of outputs generatedcontrol problem for printers from Petreczky et al. (2008b).

by H while moving from stateh; to hy. Condition(1) and ~ Formal model of the plant We will use the following pa-
the fact that the),- and R"-valued state components depend@Meters, meaning of which is described in Petreczky et al.
only on the time and input events yield (7). The computation 0(,20|(|)8b)th, (IJP' Vmazd' Vuz_nj_i’%* Tf]gv "ﬁplfm Tplzlmiv%ﬁv D. For-

the @ 4-valued states along with checking Conditi@) — (3) is mally, the plant modelrf is of the form (4). The compo-

formalized in (8). Finally, Conditiod) is formalized in (9).  [err o 3;‘*;@"'%3@ ?ELOIZVL'}TE e o i =

Theorem 3.The tuplef 5 is a quasi-sequential transducer, and e p; ., e; pL, €min,PL, €maz. PL; eFUc#- The discrete state-
the sequential input-output map(H ) recognized byH is  spaceQ = Q. x Qg is defined as follows(, is the set

an abstraction ol . of maps¢ : Vary — {True, False}, where Var; =
Finiteness ofR(H) based on Lyapunov-like functions {Spr,SrSruc). Qc is the set of all maps) : Var —
Theorem 4.Consider afinite set), C int X’ and a smooth map {Z7ue, False} whereVar = {Spy,Spp,Sa,Sp}. l.e. the
V:X — Rsuchthatforallk € X, ¢ = (¢°,¢%) € Q elements ofy),; and@. are valuations of predicates frowar
(1)'V(:v) > 0andV-1(0) C 9X 4= ' and Var, respectively. In the sequel, we will writg(X) in-

stead ofp(X) = True, and—¢(X), instead ofp(X) = False
forall € Q4, X € Varg, or¢ € Q. andX € Var,. The
continuous state-spaced$ = {z = (P,V,Cy,,T) € R?* |

(2) There existg > 0 such thagrad(V)(z) fge (z) < —c,
()Forallu € E,, if z € int X, thenV (R, 4(z)) < V(z), and

if 2 € 04, thenV(z) € &o. P < Cp} whereP,V,Cy,, T ¢ R are state variables. The

It then follows thatR (H) is finite. d e
Computation Notice that if the reset maps, flows of the vector =" fields/q, ¢° € Q. and the reset mapk,q, ¢ € Q.

fields (as in Definition 18), and the functiorig, . defining u € B are as follows. Forany = (P, V, Cy.,, T) € &,

guards are (numerically) computable then sélis. However, fae(z) = [max{v,m,V} fa.qe(a) 1 1]T
the computational complexity can get large Asdecreases. Admin(@)bmas(@) it ¢°(Sa)
Note that in this paper by (numerical) computability we mean  f2.¢<(z) = { —Dmin(@)bmaz(z) if ¢°(Sp) andg®(Srp)

existence of a numerical method, not computability in a mathe- .

matically rigorous sensé he latter is left as future work. 1(V Vi) if V€ (Vinin + €, +00)
Assumption 2.The reset maps df are affine innt X, the vec- Smin(z) = { ——"" itV € (Vinin, Vinin + €]
tor fields of are of L'ure-type, the state-space is a polyhedron, 0 ‘ if V € (=00, Vinin]



1 if V € (—00, Vinaz — €) Future research includes extension of the results to other classes
of systems and the study of robustness and computational issues

Fmaa(z) = P ff V € [Vimas — € Vimaa) such as rigorous decidability and computational complexity.
0 if V€ [Vmaz, +00)
(P,V,0,T) if w=-cpp andP < Cp REFERENCES
Ry q(a:): (P,V,Cfu,T) if u # CFpp andP<Cp i i
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Control requirements K = (E; \enprr)* U (E; \enprr)“.
Solution It is easy to see that Assumption A.1- A.3 and
Assumption 2 are satisfied fdf. We can solve Problem 1 for
H and K above using the procedure outlined §4. Notice

that Ha is computable, andR(H) is finite. For the latter,
define Xy = {(Cp, Vinaz, Tro, Tpi,maz)}, and define the
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