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1. INTRODUCTION

A widely used classification of models and modelling lan-
guages is based on the relation between state changes and the
progress of time in models. In this respect, three categories
can be distinguished: continuous-time (CT), discrete-event
(DE), and discrete-time (DT). In continuous-time models,
an infinite number of state changes occurs in any given finite
time interval, whereas there are no state changes at discrete
time points. In discrete-event models, the state changes at
discrete time points only; in between two adjacent discrete
time points the state remains the same. In discrete-time
models, the state changes at equidistant time points only.
Therefore, discrete-time models can be regarded as a subset
of discrete-event models. For this reason, the two concepts
CT and DE are sufficient. By combination of CT and DE
concepts, hybrid models and hybrid modelling languages are
obtained.

A classification of CT, DE, and CT/DE models is sufficient
to distinguish model differences with respect to their time-
dependent behaviour. A similar classification of modelling

1 Corresponding author. E-mail: d.a.v.beek@tue.nl.

Control Engineering Practice vol. 8, nr. 1, 2000, 81-91 (Preprint).

languages, however, gives little insight into the diversity (e.g.
possibilities and restrictions) of the many different hybrid
modelling languages. Therefore, a more precise classifica-
tion is proposed that entails the following five categories:
CT, CT+, DE, DE+, and CT/DE. In the following section, the
five categories are discussed, and a number of concrete hy-
brid languages are categorized. Only those hybrid languages
for which there is a simulator available are discussed. No
attempt is made to be complete in this respect. Emphasis
is on general purpose languages. Only the current state of
the field is described, no attempt is made to describe the
history of hybrid languages. The last restriction is that only
those languages that use high level language elements in at
least one domain (CT or DE) are considered. High level
language elements enable the modeller to specify systems
in an intuitive way, independently of the implementation
details of the language and solving algorithms used. As a
consequence of the last restriction, languages based on a
general purpose programming language such as Fortran (e.g.
GASP, Pritsker, 1974 or SLAM II, Pritsker, 1986), C (e.g.
Smile, 1999) or C++ (Bujakiewicz & Van den Bosch, 1991)
are not considered. The relation between the application field
of a hybrid modelling language and the choice of the hybrid
language elements is also discussed. The hybridχ (Chi)
language is classified and explained in more detail, together



with two illustrative examples of the wide application field
of the language.

2. HYBRID LANGUAGES, SIMULATORS AND
APPLICATIONS

The differences between CT, CT+, DE, DE+, and CT/DE
languages are discussed below. CT languages are suited to
CT model specification only. DE languages are suited to DE
model specification only. Hybrid languages are divided into
three categories: CT+, DE+, and CT/DE.

2.1 CT+ languages

CT+ languages are CT languages that are extended with
DE language elements. The languages are not designed for
the specification of pure DE models. Most of the hybrid
languages that provide a simulator belong in this category.
The languages are used for modelling physical systems by
means of mathematical equations. The discrete-event addi-
tions enable modelling of discontinuities or discrete control
actions. The facilities for DE modelling and simulation vary
considerably among the languages in this category. Two
sub classifications in the CT+ category are CT + disconti-
nuity modelling and CT + operating procedure modelling.
These two categories are elaborated below. More insight in
the required functionality of hybrid simulators is given by
Mosterman (1999), who compares the functionality of ten
CT+ simulators and two CT/DE simulators.

2.1.1. CT + discontinuity modelling Different DE lan-
guage elements for discontinuity specification may be pro-
vided, such as conditional equations (see Section 3.1), dis-
continuous functions, or language elements for time-event
and/or state-event specification. A time-event is an event that
occurs at a specified time point. A state-event is an event
that occurs when a continuous variable, or an expression
involving at least one continuous variable, crosses a certain
threshold value. An important application for such languages
is in the modelling and simulation of control systems for
continuous systems with discontinuities. Other applications
are found in avionics, robotics, and modelling of electrical
networks and multi-body systems. Languages in this cate-
gory are discussed below.

ACSL (Mitchell & Gauthier, 1976) is a hybrid language with
a FORTRAN like syntax that follows the Continuous System
Simulation Languages (CSSL) standard developed in 1967.
Dymola (Elmqvist, 1994) comes with many ODE/DAE (Or-
dinary Differential Equations/Differential Algebraic Equa-
tions) solvers and makes extensive use of symbolic manipula-
tion for solving and simplifying (non-causal) equations. Non-
causal equations have the advantage that input and output
variables are no longer necessary in models. The added DE
language elements are mainly used for handling discontinu-
ities in otherwise continuous systems. A simulator for the
Modelica (Mattsson, Elmqvist & Otter, 1998) language is
included with the newest version of the Dymola simulator.

Discrete actions in Dymola and Modelica are modelled in
an equation like manner. By means of Place and Transition
library models in Modelica, a certain class of Petri nets can
be integrated in the Modelica hybrid models (Mosterman,
Otter & Elmqvist, 1998b). Neptunix (Neptunix, 1999) is a
commercially available simulator that was first developed in
1980. The object oriented Omola language with the OmSim
simulator (Andersson, 1994) from the Lund Institute of Tech-
nology was originally developed with the aim of providing
better Computer Aided Control Engineering tools. HyBrSim
(Mosterman, Biswas & Otter, 1998a) is an experimental hy-
brid bond graph modeling and simulation tool based on phys-
ical principles and developed at the DLR Oberpfaffenhofen.
Simulink/Stateflow (Simulink/Stateflow, 1999) is a causal,
block diagram based modelling and simulation environment
for the development of control systems. Handling of discrete-
events in Simulink/Stateflow differs from the other packages,
since the Simulink simulator may switch to a continuous
phase before all possible discrete events have been handled
(Mosterman, 1999). Finally, 20-sim (Broenink, 1998) is a
modelling and simulation tool developed at the University
of Twente. Models can be bond graph based, block diagram
based, or equation based.

2.1.2. CT + operating procedure modelling Operating
procedures refer to the control actions required to operate
plants of the so called ‘process type’, such as a chemical
plant. Such control actions (e.g. switching valves on or off)
can be prescribed by batch recipes (see Section 2.5). Using
a CT+ language, the physical system is modelled as a CT
system with discontinuities. The DE language elements are
used to model the operating procedures.

A language in this category is gPROMS (Barton, 1992),
which is used for chemical process modelling. Its CT part
allows the non-causal specification of implicit DAEs, that
have the general form off (x′, x, y, t) = 0. The simulator
contains a very efficient and optimized index 1 DAE solver,
that can handle very large sets of equations. A nonlinear
solver for calculating the initial state and the state after
a discontinuity is also included. Modularity of continuous
components is provided by means of streams. There is no
comparable mechanism for DE components, since the DE
model components are designed to interact with CT model
components only, not with other DE components. A language
that has been derived from gPROMS is ABACUSS (Ad-
vanced Batch and Continuous Unsteady-State Simulation).
It is developed at the Massachusetts Institute of Technology
(Abacuss, 1995).

2.2 DE+ languages

DE+ languages are DE languages that are extended with
elementary language elements for modelling continuous
systems. The languages are not designed for the specification
of pure CT models. An application field of such languages is
in the modelling of certain batch plants, where the scheduling
of different products that are produced and/or stored in
different tanks is important. The main continuous aspects
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of such models would be constant (on/off) flows from one
vessel to another. Examples of such plants are beer breweries
and fruit juice packing plants. Operations like mixing, stirring
and brewing can be modelled as delay statements (see Section
3.2).

The data flow based modelling language SIMAN (Pegden,
Shannon & Sadowski, 1995) is an example of a DE+ lan-
guage. Because of the low level CT elements in this language,
the user must code the equations (ODEs or explicit DAEs of
index 0) into a C programming language function. The user
must also specify the ‘equations’ in the right order. Currently,
the SIMAN modelling language and Cinema visualization
environment have been combined in the commercial product
Arena. Another commercially available DE+ simulation en-
vironment is Simple++ (Simple++, 1999). It contains some
special purpose predefined hybrid objects, such as buffer
tanks and conveyors. The Personal Prosim (Sierenberg &
De Gans, 1992) language is a process based language, where
data at the top level is global. The equations are of the ODE
type, including DAEs of index 0, but without conditional
equations.

2.3 CT/DE languages

CT/DE languages are equipped with high level language
elements in both the CT and DE domain, and can be used
for the specification of pure CT models as well as pure DE
models. This makes it possible to model one part of the
physical processes in a plant as a CT sub model, and another
part as a DE sub model. The preparation of ice-cream, for
example, could be described as a CT or as a batch process, but
the subsequent packing of the individual ice-cornets could
be described as a DE process. Such DE modelling requires
high level data structures such as lists or queues, arrays, and
tuples or records. High level CT elements should include
conditional differential equations, where the equation chosen
depends on a boolean condition. Languages in this category
are treated below.

The CT part of COSMOS (Kettenis, 1994) allows the speci-
fication of ODEs and explicit DAEs of index 0. The DE part
is based on the process-interaction world view. Processes are
explicitly activated and deactivated. Shift (Deshpande, Göllü
& Semenzato, 1998) is a modelling language for describing
dynamic networks of hybrid automata that can be created,
interconnected and destroyed as the system evolves. The
CT part of Shift is based on ODEs that are solved with a
fixed step size solver. The discrete-event parts of sub models
can interact with one another by means of synchronous
events. VHDL (Very high speed integrated circuit Hardware
Description Language) is a language for the specification
of integrated circuits. In 1999, the VHDL super set called
VHDL 1076.1 (VHDL-AMS, 1999), or informally VHDL-
AMS, was first released. The AMS (Analog & Mixed-Signal)
analog extensions enable modelling of continuous systems
by means of DAEs. Combined with the concurrently ex-
ecuting processes from the original VHDL language, this
results in a CT/DE language. Although the language has been
designed as a special purpose language, VHDL-AMS has a

sufficient number of general purpose language elements to
be used for other purposes than integrated circuit hardware
specification. SEAMS (SEAMS, 1999) is a hybrid simulator
for VHDL-AMS. Theχ (or Chi) language is developed at the
Systems Engineering Group of the Eindhoven University of
Technology. The CT part of the language allows non-causal
specification of implicit DAEs up to index 1. Apart from a
DAE solver, the simulator also contains a nonlinear equation
solver for calculating the initial state and the state after dis-
continuities. The DE part is based on CSP (Communicating
Sequential Processes) (Hoare, 1985).

2.4 Languages for formal verification

The main purpose of the languages treated so far is to help
understand the dynamic behaviour of systems by means of
modelling and simulation. Another category of languages is
mainly used for theanalyticalderivation of model properties,
such as proving the absence of dead-lock, or proving that
certain states will be or cannot be reached (e.g. Alur, 1995).
These languages are usually based on a finite state automaton,
where each state can be associated with a set of ODEs.
Petri nets are also used for the analytical derivation of
model properties. Many different hybrid Petri nets have been
proposed. Several of these can be found in the Petri net survey
of (David & Alla, 1994). Many of the hybrid Petri nets are
flow nets, that incorporate extensions to the usual Petri nets to
enable the modelling of flows. A more generally applicable
approach is taken by allowing DAEs to be associated with
each place in a Petri net (Champagnat, Esteban, Pingaud
& Valette, 1998). The DAEs associated with a place are
activated if the place contains one or more tokens. The
continuous variables in this net are global. Structured data
types, modularity and reuse of components are generally not
provided for in hybrid Petri nets. First versions of simulators
for hybrid Petri nets have been described by Champagnat,
Esteban, Pingaud & Valette (1998), and Valentin-Roubinet
(1998).

2.5 Special purpose languages

An example of a special purpose package is BaSiP (Fritz,
Preuss & Engell, 1998). It provides a graphical interface
for modelling batch processing plants that are controlled
using batch recipes. An example of such a plant is a beer
brewery. The batch recipes would then specify for each
product what tanks to use, in what order, for how long, and
under what conditions. For simulation, BaSiP has an interface
to the gPROMS (Barton, 1992) simulator. In cases when the
discrete events can be predetermined, it provides for discrete-
event simulation. A hybrid language for electrical network
simulation is Simplorer (Simplorer, 1999). It also has some
general purpose capabilities. In (Hohmann & Zanne, 1998)
it is compared with seven other hybrid simulation languages.
The DOORS (Kasper & Koch, 1995) project aims to develop
a distributed real-time simulator for mechatronic system
design.
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3. THEχ LANGUAGE

The χ language has been designed from the start as a hy-
brid language that can be used for the specification, veri-
fication, simulation and real-time control of discrete-event
systems, continuous-time systems and combined discrete-
event / continuous-time (hybrid) systems. It has been suc-
cessfully applied to a large number of industrial cases, such
as an integrated circuit manufacturing plant (Rulkens, Van
Campen, Van Herk & Rooda, 1998) and a beer brewery.

The language is based on mathematical concepts with well
defined semantics (meaning of the language elements). It is
easy to learn and to use, because it is based on a small number
of orthogonal language elements. The symbolic notation ofχ

models improves the readability (Van Beek & Rooda, 1997b).
For simulation purposes, the symbols are replaced by their
ASCII equivalents.

The continuous-time part ofχ is based on differential alge-
braic equations (DAEs). The discrete-event part ofχ (e.g.
Van de Mortel-Fronczak & Rooda, 1996, Van de Mortel-
Fronczak, Rooda & Van den Nieuwelaar, 1995) is based on
CSP (Communicating Sequential Processes) (Hoare, 1985).
Where possible, the continuous-time and discrete-event parts
of the language are based on similar concepts. Processes are
parametrized and can be grouped into systems, which enables
the construction of hierarchical models. Discrete and contin-
uous channels are used for inter-process communication and
synchronisation.

In this paper, only a part of the language is treated. The
syntax and operational semantics of the language elements
are explained in an informal way. The first version of theχ

language was presented, together with design considerations,
by Arends (1996). Recent developments of the hybrid lan-
guage elements and simulator are covered by Fábián (1999).

The model of a system consists of a number of process
(or system) instantiations, and channels connecting these
processes. Systems are parametrized:

syst name(parameter declarations) =
|[ process and system declarations
, variable and channel declarations
| process and system instantiations
]|
The parameter declaration of processes is identical to that
of systems. A process may consist of a continuous-time part
only (links and DAEs: differential algebraic equations), a
discrete-event part only, or a combination of both.

proc name(parameter declarations) =
|[ variable declarations; initialization | links
| DAEs | discrete-event statements
]|
Processes have local variables only; all interactions between
processes take place by means of channels. A channel
connects two processes or systems. It is declared in systems
using the− symbol followed by the type of data that is carried
via the channel. A channel is either a discrete communication
channel (e.g.p : −int), a discrete synchronization channel

(e.g.s : −void) or a continuous channel (e.g.Q :: −[m3/s]).
Discrete channels are declared using a single colon (:),
whereas continuous channels are declared using a double
colon (::). The special void data type indicates the absence of
data. If a channel is declared as a process or system parameter,
the usage of the channel is declared as either discrete output
(e.g.p : ! int), discrete input (e.g.p : ? int), synchronization
without direction (e.g.s : ∼ void), or continuous without
direction (e.g.Q :: −◦ [m3/s]). A continuous channel is
represented graphically by a line (optionally ending in a
small circle to indicate either the direction of a flow, or
a cause-effect relationship), a communication channel by
an arrow, and a synchronization channel by a dotted line
(optionally ending in an arrow head to indicate a cause-
effect relationship). Processes and systems are represented
by circles.

All data types and variables are declared as either continuous
using a double colon (e.g.V :: [m3]), or discrete using a
single colon (e.g.n : int). The value of a discrete variable is
determined by assignments (e.g.n := 1). Between two sub-
sequent assignments the variable retains its value. The value
of a continuous variable, on the other hand, is determined
by equations. An assignment to a continuous variable (e.g.
initialization V ::= 0) determines its value for the current
point of time only.

Some discrete data types are predefined like bool (boolean),
int (integer) and real. Variables may be declared with units
(e.g.v :: [m/s]). All variables with units are of type real.

Structured types are defined by means of array, set, list and
tuple types. Tuples are comparable to records. A list (queue)
xs is declared asxs : T ∗. This defines a list of elements of
typeT . The first element (head) is obtained by hd(xs), the list
without the first element (tail) by tl(xs). Initialization may be
done byxs := [x1, . . . , xn], wherexi is an expression of type
T .

3.1 The continuous-time part ofχ

A time derivative is indicated by a prime character (e.g.x′).
DAEs are separated by commas:DAE1, DAE2, . . . , DAEn.
A DAE can be a normal equation or aguarded equation,
also referred to as a conditional equation. The latter is used
when the set of equations depends on the state of the system.
The syntax is[b1 −→ DAEs1 [] . . . [] bn −→ DAEsn ], where
DAEsi (1≤ i ≤ n) represents one or more DAEs. The boolean
expressionbi represents aguard. At any time, at least one of
the guards must be open (true), so that the DAEsDAEsi
associated with an open guard can be selected.

A continuous channel relates a variable of one process
to a variable of another process by means of an equality
relation.Links are used to associate a continuous channel
with a continuous variable:channel−◦ var. The variable
and the channel must be of the same (continuous) data type.
Consider two variablesxa , xb in different processes linked to
a continuous channelc (c −◦ xa andc −◦ xb). The channel
and links cause the equationxa = xb to be added to the set
of DAEs of the system.
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3.2 The discrete-event part ofχ

Interaction between discrete-event parts of processes takes
place only by means of synchronous communication (c ! e or
c ?x) or by synchronization (s ∼). Consider channelc (or s)
connecting two processes. Execution ofc ! e or c ?x in one
process causes the process to be blocked untilc ?x or c ! e is
executed in the other process, respectively. Subsequently the
value of expressione is assigned to variablex. Execution of
c ∼ in one process causes the process to be blocked untils ∼
is executed in the other process.

Time passing is specified by delay statement1t , wheret is
an expression of type real. A process executing this statement
is blocked until the time is increased byt time-units.

Selection ([GB]) is specified by[ b1 −→ S1 [] b2 −→ S2 []
. . . [] bn −→ Sn ]. The boolean expressionbi (1 ≤ i ≤ n)
represents aguard, which is open ifbi evaluates as true
and is closed otherwise. At least one of the guards must be
open. After evaluation of the guards, one of the statements
Si associated with an open guardbi is executed.

Selective waiting ([GW]) is specified by[ b1; E1 −→ S1 []
. . . [] bn;En −→ Sn ]. There are five types of event statement
Ei : output (c ! e), input (c ?x), synchronization (c ∼), time
(1t), and state (∇ r, explained in the following section). An
event statementEi which is prefixed by a guardbi (bi; Ei)
is enabled if the guard is open and the event specified inEi

can actually take place. A time event statement1 t can take
place whent time units have passed. The process executing
[GW] remains blocked until at least one event statement is
enabled. Then, one of these (Ei) is chosen for execution,
followed by execution of the correspondingSi . Please note
that guards that are always true may be omitted together
with the succeeding semicolon. Therefore ‘true; E’ may be
abbreviated to ‘E’.

Repetition of statement[GB] or [GW] is specified by∗[GB]
or ∗[GW], respectively. In this case, it is not necessary for at
least one of the guards to be open. The repetition terminates
when all guards are closed. The repetition∗[ true −→ S ]
may be abbreviated to∗[ S ].

3.3 Continuous / discrete interaction

In the discrete-event part of a process, assignments can be
made to discrete variables occurring in DAEs (e.g.a := 0
in process Fill, see Section 4.1) or in the boolean guards
of guarded DAEs (e.g.s := "stop" in process Friction1, see
Section 4.2). In the first case the DAEs will be evaluated with
new values, in the latter case different DAEs may be selected.
Continuous variables are initialized immediately after the
declarations, and may be reinitialized in the discrete-event
part. In both cases the symbol::= is used.

By means of thestate event statement∇ r, the discrete-event
part of a process can synchronize with the continuous part of
a process. Execution of∇ r, wherer is a relation involving
at least one continuous variable, causes the process to be
blocked until the relation becomes true.

3.4 Theχ simulator

Development of theχ simulator has so far taken place along
two paths. The discrete-eventχ simulator has been described
by Naumoski & Alberts (1998), the hybridχ simulator has
been described by Fábián (1999), and Fábián, Van Beek &
Rooda (1998). The syntax and semantics of theχ language
has also changed considerably since the first versions of
the χ simulators. Currently, work is being carried out to
integrate the discrete-event and hybridχ simulators based
on the newest syntax and semantics.

The Chi models in this paper are specified in a symbolic
notation. For simulation purposes, the symbols are replaced
by their ASCII equivalents. A conversion table is presented
by Van Beek & Rooda (1999). Conversion is straightforward.
For example, the symbols−→, 1, ∇, |[, 6=, x2 are converted
to ->, delta, nabla, |[, /=, x^2, respectively.

An ASCII χ model is entered in a file. This file can be
compiled by theχ compiler by entering a command in a
command window. Theχ compiler then translates the model
into a C++ program, that is subsequently linked to theχ

kernel. The result is an executable file. Executing this file
runs the simulation model. The simulation can read input
data from ASCII input files and writes output data into ASCII
output files. The resultant ASCII output data can be analyzed
using any kind of data analysis software. Theχ simulator is
available for Linux and for MS-Windows.

3.5 Formal verification ofχ models

To date, properties of the dynamic behaviour of industrial
production processes are mainly determined by means of
simulation. Simulation, however, cannot be used to prove
the correctness of a model. In order to be able to prove aχ

model to be correct with respect to certain specifications, a
joint Ph.D. project has been set up between the Systems En-
gineering Group of the Mechanical Engineering Department
and the Formal Methods Group of the Computer Science
Department of the Eindhoven University of Technology. The
project focuses on formal analysis of discrete-eventχ mod-
els. In future, a similar project will be started for verification
of hybridχ models.

Correctness of aχ model of a production system consisting
of four processes has been proved by hand (Kleijn, Reniers
& Rooda, 1998). The system was first simulated inχ .
Subsequently, theχ model was translated into a process
algebra model for which correctness was proved. In order
for the proof to be sufficient, however, the translation from
theχ model to the process algebra model must also be proved
correct. To avoid this intermediate step, the project now
focuses on direct formal reasoning inχ in order to enable the
use of model checkers and interactive theorem provers. As a
first step, the language semantics of the existingχ language
has been formally defined (Bos & Kleijn, 1999). As a result
of insights gained from this project, the language semantics
has subsequently been improved in several aspects.
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4. CASES

Two cases that illustrate different aspects of hybrid modelling
are discussed. The first case is an example of a plant where
continuous products (liquids) and discrete products (trucks
and barrels) are handled. The flow of the liquids is modelled
by means of equations, the transportation of the trucks and
barrels is modelled by means of discrete statements, commu-
nication and synchronisation. This example also deals with
stochastic phenomena, since the trucks arrive at irregular
intervals. In this case, emphasis is on the discrete-event
aspects. The second case is an example of a physical process
with discontinuities; it deals with modelling of dry friction.
The model consists of one process only. The model can be in
three states. In each state, different equations are valid. The
discrete-event part of the model switches from one state to
another. In this case, emphasis is on continuous-time aspects.

4.1 Filling station

A filling station supplies liquid that is stored in a buffer
tank of 2 m3. From this buffer tank, 200 liter barrels can be
filled with a flow rate of 1 liter/s. Trucks with empty barrels
arrive at the filling station. The time between the arrival of
two subsequent trucks is given by a negative exponential
distribution with an average of 0.5 hours. Each truck carries
exactly one barrel. The trucks line up to await their turn
before the barrel filling station. The buffer tank is supplied
with liquid from a processing plant. The flow is switched on
when the volume of the buffer tank falls below 1.8 m3, and is
switched off when the tank is full. When the flow is switched
on, the flow rate equals 0.5 m3/hour. The time required for
connecting or disconnecting a barrel to the filling station is 1
minute. Initially, the buffer tank is empty. Filling of an empty
barrel does not start until there is at least 200 liters available
in the buffer tank.

By means of a model, the dynamics of the filling station can
be analyzed with respect to the number of trucks waiting
to be filled and their waiting time. The waiting time of a
truck is defined as the period of time from its arrival until
the barrel starts to be filled. In this simplified example, no
specific control strategies are required. The trucks are served
on a ‘first come first served’ (FCFS) basis, so that the truck
that arrives first is served first. If, however, the plant produced
different kinds of liquid, and the number of barrels on a truck
that needed to be filled could vary, then different control
strategies would be useful. The trucks could for instance be
served on a shortest processing time first (SPT) basis. This
would mean that if there is more than one truck waiting
to be served at the filling station, the truck to be served
first is the truck that carries the smallest number of barrels
(assuming that the filling times of all barrels are equal). By
means of simulation, the different control strategies can then
be compared. The model of the filling station is discussed
below.

Below, the types that are used in the model are given. All
times in the model are specified in hours.

type hours= real
, vol = [m3]
, flow = [m3/hr]
Fig. 1 shows the filling station model structure. The formal
textual definition follows below.

TG TQ
tk0

BT

F

tk1

Q

VBT

Fig. 1. System FillingStation.

syst FillingStation=
|[ TG : TruckGenerator, TQ : TruckQueue
, BT : BufferTank, F : Fill
, Q :: −flow , VBT :: −vol
, trk0 : −void, trk1 : −hours
| TG(trk0) || TQ(trk0, trk1)

|| BT(Q, VBT, 0.5) || F(Q, VBT, trk1, 0.2, 3.6)

]|
Process declarationTG : TruckGenerator declares a process
variable TG of type TruckGenerator. The processes are
instantiated (created with their actual parameters) after the
| separator symbol. In this model, each process type is
instantiated only once; there is one process variable for each
process type. In larger models, there are often many process
instantiations of the same type. There could for instance be
two or more processes of type BufferTank.

The process definition of TruckGenerator follows below.

proc TruckGenerator(trk0 : ∼ void) =
|[ d : → hours, dt : hours
| d := nex(0.5)

; ∗[ 1sampled ; trk0
∼ ]

]|
Declarationd : → hours declares a distributiond that
returns values of type hours. Distributions are used to model
stochastic phenomena, where the outcome of an experiment
cannot be predicted exactly. Only, theprobability that the
outcome is a certain value, or lies in a certain interval,
is known. An example is the result of throwing a dice.
Distribution d is initialized to the negative exponential
distribution with an average value of 0.5 (hours) in statement
d := nex(0.5). The negative exponential distribution is often
used to model the period of time between the arrival of
two subsequent clients in a queue, or the time between two
subsequent failures of a device. The only possible operation
on a distribution is the sample operation (e.g. sampled). The
arrival of the trucks at the filling station is modelled by first
waiting for the next truck to arrive (1sampled). The delta
statement10.34 for instance, waits until the simulation time
is increased with 0.34 time units (hours in this case). The
result of sampled is a ‘random’ value in hours, such that
the average of all subsequent samples converges to 0.5 in
the end. After the required time has passed in1 sampled,
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the arrival of the truck is modelled by synchronizing with
processTQ of type TruckQueue via channeltrk0 (trk0

∼).
After this synchronization, the loop∗[ . . . ] is re-executed,
beginning with delta statement1sampled.

ProcessTQ of type TruckQueue models a ‘first come first
served’ (FCFS), also called ‘first in first out’ (FIFO), buffer.

proc TruckQueue(trk0 : ∼ void, trk1 : ! hours) =
|[ nc :: [−], xs : hours∗
| nc = len(xs)
| xs := [ ]
; ∗[ trk0

∼ −→ xs := xs++[τ ]
[] len(xs) > 0; trk1 ! hd(xs) −→ xs := tl(xs)
]

]|
The trucks that enter the buffer are stored in list (or queue)
xs. A list is an ordered collection of elements of the same
type. For example[0,7,7,2] is a list containing the numbers
0, 7, 7, and 2, in that order. Operator++ concatenates two
lists. For example,[0] ++ [7, 7] = [0, 7, 7]. Function hd
(head) returns the first element of the list. For example,
hd([0, 7, 7, 2]) = 0. Function tl (tail) returns the list without
the first element. For example, tl([0, 7, 7, 2]) = [7, 7, 2].
Function len (length) returns the number of elements in the
list. For example len([0, 7, 7]) = 3. Declarationxs : hours∗
declares a list of elements of type hours. The list is initialized
as empty (xs := [ ]). The buffer is modelled by means of
a selective waiting statement ([ . . . [] . . . ]). At any time
point, a truck may enter or leave the buffer. A truck entering
the buffer is modelled by means of the synchronization
trk0

∼. If this synchronization with processTG succeeds,
the ‘entering truck’ is added to listxs. In this model, only the
arrival time of the truck is actually added to the list (xs :=
xs++[τ ]). Since all trucks are the same, there is no other
information about the trucks that needs to be stored. Symbol
τ represents the current simulation time. A truck leaving the
buffer is modelled by means of communication statement
trk1 !hd(xs), where hd(xs) is the first truck (in fact the arrival
time of the first truck) in the list. Statementtrk1 ! hd(xs) can
only be executed under the condition that the listxs is not
empty (len(xs) > 0). If the truck has been successfully sent
to the filling process (processF of type Fill), the truck is
removed from the list (xs := tl(xs)). Continuous variablenc
is used for data logging purposes only. Theχ simulator logs
the values of the continuous variables to an output file. In
equationnc = len(xs), continuous variablenc is made equal
to len(xs). In this way, the logged values ofnc represent the
number of trucks in the buffer. This data is used to create
the graph that shows the number of trucks in the buffer as a
function of time (see Figure 3). The equations are evaluated
when all discrete actions at the current simulation time point
have finished. If, for example, the first truck is generated in
processTG at time 0.45, the truck enters the buffer (trk0

∼).
However, immediately thereafter at the same time point, the
truck leaves the buffer (trk1 ! hd(xs)). After that, the buffer
process waits for a new truck to enter the buffer. This means
that at the end of time point 0.45, the buffer is empty again,
and equationnc = len(xs) evaluates tonc = 0. Therefore,
the value ofnc remains 0, and the temporary buffer size of

1 at time point 0.45 is not logged in the output file. This is
exactly the desired behaviour.

ProcessBT of type BufferTank models the buffer tank.
Continuous variablesV andQmodel the volume of the buffer
tank, and the flow from the buffer tank to the filling process,
respectively. VariableQ in processBT is equal to variableQ
in processF (process type Fill). The value ofQ is determined
in processF by equationQ = a · Qset. Equality of the two
variablesQ is achieved by means of continuous channelQ in
system FillingStation (see the system definition and Fig. 1),
and the linksQ_ −◦ Q in processesBT andF . In a similar
way, variableV in processBT equals variableVBT in process
F . ParameterQset represents the value of the flow into the
buffer tank when it is being filled.

proc BufferTank( Q_ :: −◦ flow , VBT_ :: −◦ vol
, Qset : real
) =

|[ V :: vol, Q :: flow
, Qi : real
; V ::= 0; Qi := 0
| Q_ −◦ Q

, VBT_ −◦ V

| V ′ = Qi − Q

| ∗[ Qi := Qset; ∇ V > 2; Qi := 0; ∇ V < 1.8 ]
]|
Input flowQi is piece-wise constant. Therefore it is modelled
by means of a discrete variable, instead of a continuous
variable. Its value is changed by means of assignments
(Qi := 0 andQi := Qset). EquationV ′ = Qi − Q is derived
from the mass balance. This is possible because the incoming
and outgoing liquids are incompressible and are of the same
kind. The discrete-event part of the process consists of a
loop. First, the incoming flow is switched on (Qi := Qset).
In the next statement, the process waits until the tank is
full (∇V > 2). When expressionV > 2 becomes true, the
incoming flow is switched off (Qi := 0). Subsequently, the
process waits until the level of the tank drops below 1.8.
When this happens, the loop is re-executed, and the incoming
flow is switched on again.

The barrels are filled in processF of type Fill. The volume of
the barrel to be filled is represented by continuous variableV .
The pump is modelled by discrete variablea. This variable
is of type nat (natural: positive integer). Ifa = 0, the pump
is off, if a = 1, the pump is on (see equationsQ = a · Qset
and equationV ′ = Q). Discrete variablestarrive, tsum, twavg,
andnsum are used to determine the average waiting time of
a truck.

proc Fill ( Q_ :: −◦ flow , VBT_ :: −◦ vol
, trk1 : ? hours
, Vbarrel, Qset : real
) =

|[ V, VBT :: vol, Q :: flow , twcavg :: [−]
, tarrive, tsum, twavg : hours, a, nsum : nat
; V ::= 0; a := 0
| Q_ −◦ Q

, VBT_ −◦ VBT
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| V ′ = Q

, Q = a · Qset
, twcavg = twavg
| tsum := 0; nsum := 0; twavg := 0
; ∗[ trk1 ?tarrive

; 1 1/60; ∇ VBT ≥ Vbarrel
; tsum := tsum+ (τ − tarrive) ; nsum := nsum+ 1
; twavg := tsum/nsum
; a := 1; ∇ V ≥ Vbarrel; a := 0; V ::= 0
; 1 1/60
]

]|
First, the process waits for the arrival of a truck in receive
statementtrk1 ? tarrive. The communication succeeds when
there is a truck in buffer processTQ, and the buffer process
executes the send actiontrk1 ! hd(xs). As a result, the arrival
time of the truck is stored in variabletarrive. Next, process
F waits for 1/60 hours (1 minute), which models the time
required for connecting the barrel to the filling station. Then,
the process waits until there is sufficient liquid in the buffer
tank to fill the barrel (∇VBT ≥ Vbarrel). After this, the average
waiting time is calculated. The waiting time of the truck
equalsτ − tarrive (the current simulation time minus the
arrival time of the truck at the buffer station). This time is
added to the total waiting time of all truckstsum. The average
waiting time is then set to the total waiting time divided by the
total number of trucks that have waited (twavg := tsum/nsum).
Subsequently, the barrel filling flow is switched on (a := 1).
When the barrel is filled (∇V ≥ Vbarrel), the flow is switched
off, and the volumeV is reset tot 0 (V ::= 0), so that
the next barrel can be filled. Disconnecting the barrel is
modelled by delay statement11/60. Continuous variable
twcavg and equationtwcavg = twavg are used for data logging
purposes only, in a way analogous to variablenc in process
TruckQueue.

Figures 2 and 3 show the simulation results. In the last
graph, flowQ shows the filling pattern of the barrels. The
flow equals 3.6 [m3/hr]. Since filling a barrel only takes
3 minutes approximately, the filling action results in a short
vertical line in the graph. When the trucks arrive shortly after
one another, they have to wait in the queue, and the volume of
the buffer tank decreases. When the time between the arrival
of the trucks increases, the queue (truck buffer) becomes
empty, whereafter the volume of the buffer tank increases.
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Fig. 2. Buffer tank volumeVBT [m3], and average truck
waiting timetwavg [hr].
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The average waiting time of the trucks varies between 0.2
and 0.5 hours. Since this is relatively long, the volume of the
buffer tank or the flow rate of the incoming flow should be
increased.

4.2 Dry friction

Fig. 4 shows a body that can slide along a flat surface. A

Fig. 4. Dry friction.

driving forceFd (Fd = sin 0.25πτ , whereτ is the current
time) is applied to the body. When the body is moving
with positive velocityv, the frictional force is given by
Ff = µFN, whereFN = mg. When the velocity of the body
is 0, the frictional force neutralizes the applied driving force.
If the driving force becomes bigger thanµ0FN, the body
suddenly starts moving according toFd − Ff = mv′, where
Ff = µFN (µ < µ0). In process Friction1, defined below,
discrete variables represents the state of the process; it
can have the values "neg", "stop", and "pos" (indicated by
the comment-- {"neg", "stop", "pos"} in the model). These
values correspond with negative, zero, and positive velocities
respectively of the body. VariableFN is declared as a discrete
variable (FN : real), because its value remains constant.

proc Friction1(ε, µ, µ0, m : real) =
|[ Ff , Fd :: [N], x :: [m], v :: [m/s]
, FN : real, s : string −− {"neg", "stop", "pos"}
; x ::= −2; v ::= 0; FN := mg ; s := "stop"
| Fd = sin 0.25πτ

, v′ = (Fd − Ff )/m

, x′ = v

, [ s = "neg" −→ Ff = −µFN
[] s = "stop" −→ Ff = Fd
[] s = "pos" −→ Ff = µFN
]
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| ∗[ s = "stop"; ∇ Fd > µ0FN −→ s := "pos"
; v ::= ε

[] s = "stop"; ∇ Fd < −µ0FN −→ s := "neg"
; v ::= −ε

[] s 6= "stop"; ∇ v = 0 −→ s := "stop"
]

]|
The discrete-event part of process Friction1 consists of a
selective waiting statement ([ . . . [] . . . [] . . . ]) that is repeated
forever (∗). If boolean expressions = "stop" is true and
driving forceFd becomes bigger than the thresholdµ0FN,
state event∇ Fd > µ0FN succeeds. As a result, the state
switches to "pos" (s := "pos"), causing equationFf = µFN
to become active in the continuous-time part. The velocityv is
then assigned a very small valueε (v ::= ε) in order to prevent
the state event∇ v = 0 from occurring immediately. Now
that the state equals "pos", boolean expressions 6= "stop" is
true. This means that state event∇ v = 0 is awaited. When
v becomes equal to 0, the state changes to "stop" again.

Process Friction2, that follows below, is a more detailed
model. In this model, a small amount of energy is required
to switch from state "stop" to state "pos" or "neg". For this
purpose, a fourth state "try" is introduced. If|Fd| becomes
bigger thanµ0FN, the state switches to "try". In this state,
the frictional force equalsµ0FN. If the driving force causes
the velocity of the body to become bigger thanε (a small
user defined value, e.g. 10−5), the state switches to "pos".
If, however, the driving force falls back belowµ0FN, the
state switches back to "stop". Fig. 5 shows the results of a 10
second simulation run for the process Friction1 and Friction2.
The difference between the results of the two processes is too
small to be shown graphically.

proc Friction2(ε, µ, µ0, m : real) =
|[ Ff , Fd : [N], x : [m], v : [m/s]
, FN : real, s : string −− {"neg", "stop", "try" , "pos"}
; x ::= −2; v ::= 0; FN := mg ; s := "stop"
| Fd = sin 0.25πτ

, v′ = (Fd − Ff )/m

, x′ = v

, [ s = "neg" −→ Ff = −µFN
[] s = "stop" −→ Ff = Fd
[] s = "try" −→ Ff = sign(Fd) · µ0FN
[] s = "pos" −→ Ff = µFN
]

| ∗[ s = "stop"; ∇ |Fd| > µ0FN
−→ s := "try"

; [ ∇ v > ε −→ s := "pos"
[] ∇ v < ε −→ s := "neg"
[] ∇ |Fd| ≤ µ0FN −→ s := "stop"; v ::= 0
]

[] s 6= "stop"; ∇ v = 0
−→ s := "stop"

]
]|
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Fig. 5. Friction simulation (µ = 0.1, µ0 = 0.18, m = 1,
ε = 10−5, g = 10).

4.3 Additional examples

Discrete-time controllers of a nonlinear tank system are
discussed in Van Beek & Rooda (1997a). The nonlinearity is
caused by a saturating actuator in the form of a valve. Several
control strategies are modelled and simulated, including a
PI controller with anti-windup (Bohn & Atherton, 1995).
In Van Beek, Gordijn & Rooda (1995), a model of a plant
for the biochemical production of ethanol is described.
Detailed models of a conveyor line transportation system
with actuators and sensors and the associated control system
are presented in Van Beek, Rooda & Gordijn (1996) and Van
Beek, Gordijn & Rooda (1997). Finally, a model of a bottle
factory and other examples are presented in Van Beek &
Rooda (1999).

5. CONCLUDING REMARKS

The proposed new classification of modelling languages into
CT, CT+, DE, DE+, and CT/DE categories gives a better
insight into the diversity of the so called hybrid modelling
languages and simulators. The classification into different
categories does not imply that languages from one category
are better than languages from another. Depending on the
type of applications that a modeller deals with, he or she
should choose a language that fulfils his or her needs best.
The CT/DEχ language and simulator have a wide field of
application. They have been successfully applied to a large
number of complex industrial cases, such as an integrated
circuit manufacturing plant and a beer brewery.
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