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Abstract: A widely used classification of modelling languages distinguishes the categories
continuous-time (CT), discrete-event (DE), discrete-time (DT), and hybrid. For a better insight
into the many different hybrid languages, a classification of five categories (CT, CT+, DE,
DE+, and CT/DE) is proposed. Each category is explained, together with many of the included
languages, simulators, and the associated application fields. Special interest is given to the
Chi language used for specification, simulation and real-time control of industrial systems. Its
CT partis based on (conditional) DAEs, its DE part on Communicating Sequential Processes.
The suitability of the language for DE, CT, and CT/DE modelling is illustrated by two cases.
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1. INTRODUCTION languages, however, gives little insight into the diversity (e.g.
possibilities and restrictions) of the many different hybrid
A widely used classification of models and modelling lan- modelling languages. Therefore, a more precise classifica-
guages is based on the relation between state changes and thign is proposed that entails the following five categories:
progress of time in models. In this respect, three categoriescT, CT+, DE, DE+, and CT/DE. In the following section, the
can be distinguished: continuous-time (CT), discrete-eventfive categories are discussed, and a number of concrete hy-
(DE), and discrete-time (DT). In continuous-time models, prid languages are categorized. Only those hybrid languages
an infinite number of state changes occurs in any given finite for which there is a simulator available are discussed. No
time interval, whereas there are no state changes at discretgttempt is made to be complete in this respect. Emphasis
time points. In discrete-event models, the state Changes ats on genera| purpose |anguages_ On|y the current state of
discrete time points only; in between two adjacent discrete the field is described, no attempt is made to describe the
time points the state remains the same. In discrete-timenijstory of hybrid languages. The last restriction is that only
models, the state changes at equidistant time points onlythose languages that use high level language elements in at
Therefore, discrete-time models can be regarded as a subs@éast one domain (CT or DE) are considered. High level
of discrete-event models. For this reason, the two Conceptqanguage elements enable the modeller to Specify systems
CT and DE are sufficient. By combination of CT and DE in an intuitive way, independently of the implementation
concepts, hybrid models and hybrid modelling languages aregetails of the language and solving algorithms used. As a
obtained. consequence of the last restriction, languages based on a

A classification of CT, DE, and CT/DE models is sufficient 9€neral purpose programming language such as Fortran (e.g.
to distinguish model differences with respect to their time- GASP, Pritsker, 1974 or SLAM I, Pritsker, 1986), C (e.g.

dependent behaviour. A similar classification of modelling SMile, 1999) or C++ (Bujakiewicz & Van den Bosch, 1991)
are not considered. The relation between the application field

of a hybrid modelling language and the choice of the hybrid
! Corresponding author. E-mail: d.a.v.beek@tue.nl. language elements is also discussed. The hyjpriEChi)
Control Engineering Practice vol. 8, nr. 1, 2000, 81-91 (Preprint). Ianguage is classified and explained in more detail, tOgethef




with two illustrative examples of the wide application field Discrete actions in Dymola and Modelica are modelled in
of the language. an equation like manner. By means of Place and Transition
library models in Modelica, a certain class of Petri nets can
be integrated in the Modelica hybrid models (Mosterman,
2. HYBRID LANGUAGES, SIMULATORS AND Otter & EImqvist, 1998b). Neptunix (Neptunix, 1999) is a
APPLICATIONS commercially available simulator that was first developed in
1980. The object oriented Omola language with the OmSim
The differences between CT, CT+, DE, DE+, and CT/DE Simulator (Andersson, 1994) from the Lund Institute of Tech-
languages are discussed below. CT languages are suited t80l0gy was originally developed with the aim of providing
CT model specification only. DE languages are suited to DE better Computer Aided Control Engineering tools. HyBrSim

model specification only. Hybrid languages are divided into (Mosterman, Biswas & Otter, 1998a) is an experimental hy-
three categories: CT+, DE+, and CT/DE. brid bond graph modeling and simulation tool based on phys-

ical principles and developed at the DLR Oberpfaffenhofen.
Simulink/Stateflow (Simulink/Stateflow, 1999) is a causal,

block diagram based modelling and simulation environment
for the development of control systems. Handling of discrete-
CT+ languages are CT languages that are extended witrgventsin Simulink/Stateflow differs from the other packages,

DE language elements. The languages are not designed fop"c€ the Simulink simulator may switch to a continuous
the specification of pure DE models. Most of the hybrid phase before all possible discrete events have been handled

languages that provide a simulator belong in this category.(MOSterman' 1999). Finally, 20-sim (Broenink, 1998) is a

The languages are used for modelling physical systems bwodelling and simulation tool developed at the University

means of mathematical equations. The discrete-event addiof Twente. Models can be bond graph based, block diagram

tions enable modelling of discontinuities or discrete control Pased. or equation based.
actions. The facilities for DE modelling and simulation vary

considerably among the languages in this category. Two2.1.2. CT + operating procedure modelling Operating

sub classifications in the CT+ category are CT + disconti- procedures refer to the control actions required to operate
nuity modelling and CT + operating procedure modelling. plants of the so called ‘process type’, such as a chemical
These two Categories are elaborated below. More InS|ght inp|ant_ Such control actions (eg Switching valves on or Off)
the required functionality of hybrid simulators is given by can be prescribed by batch recipes (see Section 2.5). Using
Mosterman (1999), who compares the functionality of ten 3 cT+ language, the physical system is modelled as a CT
CT+ simulators and two CT/DE simulators. system with discontinuities. The DE language elements are

used to model the operating procedures.

2.1.1. CT + discontinuity modelling Different DE lan- A language in this category is gPROMS (Barton, 1992),
guage elements for discontinuity specification may be pro- which is used for chemical process modelling. Its CT part
vided, such as conditional equations (see Section 3.1), disallows the non-causal specification of implicit DAEs, that
continuous functions, or language elements for time-eventhave the general form df(x’, x, y, t) = 0. The simulator
and/or state-event specification. A time-eventis an event thatcontains a very efficient and optimized index 1 DAE solver,
occurs at a specified time point. A state-event is an eventthat can handle very large sets of equations. A nonlinear
that occurs when a continuous variable, or an expressionsolver for calculating the initial state and the state after
involving at least one continuous variable, crosses a certaina discontinuity is also included. Modularity of continuous
threshold value. An important application for such languages components is provided by means of streams. There is no
is in the modelling and simulation of control systems for comparable mechanism for DE components, since the DE
continuous systems with discontinuities. Other applications model components are designed to interact with CT model
are found in avionics, robotics, and modelling of electrical components only, notwith other DE components. A language
networks and multi-body systems. Languages in this cate-that has been derived from gPROMS is ABACUSS (Ad-
gory are discussed below. vanced Batch and Continuous Unsteady-State Simulation).

ACSL (Mitchell & Gauthier, 1976) is a hybrid language with It is developed at the Massachusetts Institute of Technology

a FORTRAN like syntax that follows the Continuous System (Abacuss, 1995).

Simulation Languages (CSSL) standard developed in 1967.

Dymola (Elmqvist, 1994) comes with many ODE/DAE (Or-

dinary Differential Equations/Differential Algebraic Equa- 2.2 DE+ languages

tions) solvers and makes extensive use of symbolic manipula-

tion for solving and simplifying (non-causal) equations. Non- DE+ languages are DE languages that are extended with
causal equations have the advantage that input and outpuglementary language elements for modelling continuous
variables are no longer necessary in models. The added DEystems. The languages are not designed for the specification
language elements are mainly used for handling discontinu-of pure CT models. An application field of such languages is
ities in otherwise continuous systems. A simulator for the inthe modelling of certain batch plants, where the scheduling
Modelica (Mattsson, Elmqvist & Otter, 1998) language is of different products that are produced and/or stored in
included with the newest version of the Dymola simulator. different tanks is important. The main continuous aspects

2.1 CT+ languages
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of such models would be constant (on/off) flows from one sufficient number of general purpose language elements to
vessel to another. Examples of such plants are beer breweriebe used for other purposes than integrated circuit hardware
and fruit juice packing plants. Operations like mixing, stirring specification. SEAMS (SEAMS, 1999) is a hybrid simulator
and brewing can be modelled as delay statements (see Sectidior VHDL-AMS. The x (or Chi) language is developed at the
3.2). Systems Engineering Group of the Eindhoven University of
Technology. The CT part of the language allows non-causal
specification of implicit DAEs up to index 1. Apart from a
DAE solver, the simulator also contains a nonlinear equation
Solver for calculating the initial state and the state after dis-
continuities. The DE part is based on CSP (Communicating
Sequential Processes) (Hoare, 1985).

The data flow based modelling language SIMAN (Pegden,
Shannon & Sadowski, 1995) is an example of a DE+ lan-
guage. Because ofthe low level CT elements in this language
the user must code the equations (ODEs or explicit DAEs of
index 0) inb a C programming language function. The user
must also specify the ‘equations’ in the right order. Currently,
the SIMAN modelling language and Cinema visualization
environment have been combined in the commercial product
Arena. Another commercially available DE+ simulation en- 2 4 Languages for formal verification
vironment is Simple++ (Simple++, 1999). It contains some
special purpose predefined hybrid objects, such as bufferrhe main purpose of the languages treated so far is to help
tanks and conveyors. The Personal Prosim (Sierenberg &nderstand the dynamic behaviour of systems by means of
De Gans, 1992) language is a process based language, whefodelling and simulation. Another category of languages is
data at the top level is global. The equations are of the ODE mainly used for thanalyticalderivation of model properties,
type, including DAEs of index 0, but without conditional = such as proving the absence of dead-lock, or proving that
equations. certain states will be or cannot be reached (e.g. Alur, 1995).
These languages are usually based on afinite state automaton,
where each state can be associated with a set of ODEs.
2.3 CT/DE languages Petri nets are also used for the analytical derivation of
model properties. Many different hybrid Petri nets have been

CT/DE languages are equipped with high level language Proposed. Several of these can be found in the Petrinet survey
elements in both the CT and DE domain, and can be used®f (David & Alla, 1994). Many of the hybrid Petri nets are
for the specification of pure CT models as well as pure DE flow nets, thatincorporate extensions to the usual Petri netsto
models. This makes it possible to model one part of the €nable the modelling of flows. A more generally applicable
physical processes in a plant as a CT sub model, and anothefPProach is taken by allowing DAEs to be associated with
part as a DE sub model. The preparation of ice-cream, for€ach place in a Petri net (Champagnat, Esteban, Pingaud
example, could be described as a CT or as a batch process, b Valette, 1998). The DAEs associated with a place are
the subsequent packing of the individual ice-cornets could activated if the place contains one or more tokens. The
be described as a DE process. Such DE mode”ing require§0ntinuous variables in this net are gIObal Structured data
high level data structures such as lists or queues, arrays, ané/Pes, modularity and reuse of components are generally not
tuples or records. High level CT elements should include provided for in hybrid Petri nets. First versions of simulators
conditional differential equations, where the equation chosenfor hybrid Petri nets have been described by Champagnat,
depends on a boolean condition. Languages in this categoryesteban, Pingaud & Valette (1998), and Valentin-Roubinet
are treated below. (1998).

The CT part of COSMOS (Kettenis, 1994) allows the speci-

fication of ODEs and explicit DAEs of index 0. The DE part

is based on the process-interaction world view. Processes ar@.5 Special purpose languages

explicitly activated and deactivated. Shift (Deshpande, Gallt

& Semenzato, 1998) is a modelling language for describing An example of a special purpose package is BaSiP (Fritz,
dynamic networks of hybrid automata that can be created,Preuss & Engell, 1998). It provides a graphical interface
interconnected and destroyed as the system evolves. Théor modelling batch processing plants that are controlled
CT part of Shift is based on ODEs that are solved with a using batch recipes. An example of such a plant is a beer
fixed step size solver. The discrete-event parts of sub modeldrewery. The batch recipes would then specify for each
can interact with one another by means of synchronousproduct what tanks to use, in what order, for how long, and
events. VHDL (Very high speed integrated circuit Hardware underwhat conditions. For simulation, BaSiP has aninterface
Description Language) is a language for the specification to the gPROMS (Barton, 1992) simulator. In cases when the
of integrated circuits. In 1999, the VHDL super set called discrete events can be predetermined, it provides for discrete-
VHDL 1076.1 (VHDL-AMS, 1999), or informally VHDL- event simulation. A hybrid language for electrical network
AMS, wasfirstreleased. The AMS (Analog & Mixed-Signal) simulation is Simplorer (Simplorer, 1999). It also has some
analog extensions enable modelling of continuous systemsgeneral purpose capabilities. In (Hohmann & Zanne, 1998)
by means of DAEs. Combined with the concurrently ex- itis compared with seven other hybrid simulation languages.
ecuting processes from the original VHDL language, this The DOORS (Kasper & Koch, 1995) project aims to develop
resultsin a CT/DE language. Although the language has beera distributed real-time simulator for mechatronic system
designed as a special purpose language, VHDL-AMS has adesign.
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3. THE x LANGUAGE (e.g.s : —void) or a continuous channel (e@.:: —[m3/s]).
Discrete channels are declared using a single cofpn (

The x language has been designed from the start as a hy\vhereas continuous channels are declared using a double
brid language that can be used for the specification, veri- ¢0lon (:). The special void data type indicates the absence of
fication, simulation and real-time control of discrete-event data.lfachannelis declared as aprocess or system parameter,
systems, continuous-time systems and combined discretethe usage of the channel is declared as either discrete output
event / continuous-time (hybrid) systems. It has been suc-(€-9.p : !int), discrete input (e.g» : ?int), synchronization
cessfully applied to a large number of industrial cases, suchWithout direction (e.gss : ™ void), or continuous without

as an integrated circuit manufacturing plant (Rulkens, Van direction (e.g.Q :: —o [m3/s]). A continuous channel is

Campen, Van Herk & Rooda, 1998) and a beer brewery. represented graphically by a line (optionally ending in a
small circle to indicate either the direction of a flow, or

The language is based on mathematical concepts with welly cayse-effect relationship), a communication channel by
defined semantics (meaning of th.ellanguage elements). Itisan arrow, and a synchronization channel by a dotted line
easytolearn andto use, because itis based onasmallnumb%ptiona”y ending in an arrow head to indicate a cause-

of orthogonallanguage elements. The symbolic notation of ~ effect relationship). Processes and systems are represented
models improves the readability (Van Beek & Rooda, 1997b). py circles.

For simulation purposes, the symbols are replaced by their _ ) )
ASCII equivalents. All data types and variables are declared as either continuous

using a double colon (e.g/ :: [m?]), or discrete using a
The continuous-time part of is based on differential alge-  single colon (e.gu : int). The value of a discrete variable is
braic equations (DAEs). The discrete-event parfofe.g.  determined by assignments (exg= 1). Between two sub-
Van de Mortel-Fronczak & Rooda, 1996, Van de Mortel- sequent assignments the variable retains its value. The value
Fronczak, Rooda & Van den Nieuwelaar, 1995) is based ongf 3 continuous variable, on the other hand, is determined
CSP (Communicating Sequential Processes) (Hoare, 1985)py equations. An assignment to a continuous variable (e.g.
Where possible, the continuous-time and discrete-event partsitialization V ::= 0) determines its value for the current
of the language are based on similar concepts. Processes aigint of time only.
parametrized and can be grouped into systems, which enables
the construction of hierarchical models. Discrete and contin- SOme discrete data types are predefined like bool (boolean),

uous channels are used for inter-process communication andt (integer) and real. Variables may be declared with units
synchronisation. (e.g.v :: [m/s]). All variables with units are of type real.

In this paper, only a part of the language is treated. The Structured types are defined by means of array, s_et, list and
syntax and operational semantics of the language element§UPle types. Tuples are comparable to records. A list (queue)
are explained in an informal way. The first version of the ~ XSis declared ass : T*. This defines a list of elements of
language was presented, together with design considerationdyPeT - The first element (head) is obtained by(ks), the list

by Arends (1996). Recent developments of the hybrid lan- Without the first element (tail) by@k;). Inltlallzatlon may be
guage elements and simulator are covered by Fabian (1999)(;one byxs := [x1. ..., x,], wherex; is an expression of type

The model of a system consists of a humber of process '
(or system) instantiations, and channels connecting these

processes. Systems are parametrized: 3.1 The continuous-time part of

syst namdparameter declarations=

[ process and system declarations A time derivative is indicated by a prime character (e’y-
, variable and channel declarations DAEs are separated by comm®&HAE;, DAE,, ..., DAE,.
| process and system instantiations A DAE can be a normal equation or guarded equation,
1 also referred to as a conditional equation. The latter is used

. o . when the set of equations depends on the state of the system.
The parameter declaration of processes is identical to that.l_he syntax i§ by DAES [...[ b DAES, ], where
— . e n > 1

of syst_ems. A process. may cons_lst ofa cor?tlnuous-_tlme partDAEs (1 <i < n)represents one or more DAEs. The boolean
only (links and DAEs: differential algebraic equations), a . :
discrete-event part only, or a combination of both expressiorb; represents guard. At any time, at least one of

' ' the guards must be open (true), so that the DARES
proc nameéparameter declarations= associated with an open guard can be selected.

[ variable declarations initialization | links . .
A continuous channel relates a variable of one process

| DAEs | discrete-event statements . ;

to a variable of another process by means of an equality
] relation. Links are used to associate a continuous channel
Processes have local variables only; all interactions betweerwith a continuous variablechannel— var. The variable
processes take place by means of channels. A channeand the channel must be of the same (continuous) data type.
connects two processes or systems. It is declared in system€onsider two variables,, x;, in different processes linked to
using the— symbol followed by the type of data thatis carried a continuous channel(c — x, andc —o x3). The channel
viathe channel. A channelis either a discrete communicationand links cause the equatiap = x; to be added to the set
channel (e.gp : —int), a discrete synchronization channel of DAEs of the system.
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3.2 The discrete-event part of 3.4 They simulator

Interaction between discrete-event parts of processes takesDevelopment of the; simulator has so far taken place along
place only by means of synchronous communicatidre ©r two paths. The discrete-evensimulator has been described

¢ ?x) or by synchronizations(™). Consider channeil (or s) by Naumoski & Alberts (1998), the hybrig simulator has
connecting two processes. Executiorcdk or ¢ ?x in one been described by Fabian (1999), and Fabian, Van Beek &
process causes the process to be blocked &/iilor ¢ ! e is Rooda (1998). The syntax and semantics of tHanguage
executed in the other process, respectively. Subsequently théas also changed considerably since the first versions of
value of expressioa is assigned to variable. Execution of  the y simulators. Currently, work is being carried out to

¢ ™ in one process causes the process to be blockedstntil  integrate the discrete-event and hybyicsimulators based

is executed in the other process. on the newest syntax and semantics.

Time passing is specified by delay statementz, wherer is The Chi models in this paper are specified in a symbolic
an expression of type real. A process executing this statemenhotation. For simulation purposes, the symbols are replaced
is blocked until the time is increased byime-units. by their ASCII equivalents. A conversion table is presented
Selection ([GBY]) is specified by b1 —> 1 [| by —> S [ IlzyVan Beelk %Eoodak()lﬁ).gogversmn |Zs stralghtfort\N(aj\rd.
... by — S, 1. The boolean expressidn (1 < i < n) orexample, the symbois—, A, V, [[, #, x* are converte

represents guard, which is open ifb; evaluates as true to ->, delta, nabla, |[, /=, xA2, respectively.

and is closed otherwise. At least one of the guards must beAn ASCII ¥ model is entered in a file. This file can be
open. After evaluation of the guards, one of the statementscompiled by they compiler by entering a command in a
S; associated with an open gudrdis executed. command window. The compiler then translates the model
into a C++ program, that is subsequently linked to jhe
kernel. The result is an executable file. Executing this file
runs the simulation model. The simulation can read input
data from ASCIl input files and writes output datainto ASCII
output files. The resultant ASCII output data can be analyzed
using any kind of data analysis software. Theimulator is
available for Linux and for MS-Windows.

Selective waiting ([(GW)]) is specified by b1; E1 —> S1 ]

... by; En —> S, 1. There are five types of event statement
E;: output ¢!e), input (¢ ?x), synchronizationd ™), time
(A1), and stateV r, explained in the following section). An
event statemenk; which is prefixed by a guard; (b;; E;)

is enabled if the guard is open and the event specifigtl in
can actually take place. A time event statemgmtcan take
place wherr time units have passetihe process executing
[GW] remains blocked until at least one event statement is
enabled. Then, one of thesg;] is chosen for execution,
followed by execution of the correspondisg Please note 3.5 Formal verification ofy models
that guards that are always true may be omitted together

with the succeeding semicolon. Therefore ‘tréie may be

X To date, properties of the dynamic behaviour of industrial
abbreviated toE’.

production processes are mainly determined by means of
Repetition of statemenfGB] or [GW] is specified by[GB] simulation. Simulation, however, cannot be used to prove
or x[GW], respectively. In this case, it is not necessary for at the correctness of a model. In order to be able to proye a
least one of the guards to be open. The repetition terminategnodel to be correct with respect to certain specifications, a
when all guards are closed. The repetitigrtrue —> S'] joint Ph.D. project has been set up between the Systems En-
may be abbreviated tg S ]. gineering Group of the Mechanical Engineering Department
and the Formal Methods Group of the Computer Science
Department of the Eindhoven University of Technology. The
project focuses on formal analysis of discrete-eyentod-
3.3 Continuous / discrete interaction els. In future, a similar project will be started for verification
of hybrid x models.
In the discrete-event part of a process, assignments can b
made to discrete variables occurring in DAEs (e.g= 0
in process Fill, see Section 4.1) or in the boolean guards
of gqarded DAES (q.g;. = "stop” in process Friction see ... Subsequently, they model was translated into a process
Section 4.2). In the first case the DAEs will be evaluated with .
algebra model for which correctness was proved. In order

new values, in the latter case different DAEs may be selected, . :
. . A . . for the proof to be sufficient, however, the translation from
Continuous variables are initialized immediately after the

. o . : they modelto the process algebra model must also be proved
declarations, and may be reinitialized in the discrete-event : o . ;
. correct. To avoid this intermediate step, the project now
part. In both cases the symhek is used.

focuses on direct formal reasoningynn order to enable the

By means of thatate event statement/ r, the discrete-event  use of model checkers and interactive theorem provers. As a
part of a process can synchronize with the continuous part offirst step, the language semantics of the exisgingnguage

a process. Execution af r, wherer is a relation involving has been formally defined (Bos & Kleijn, 1999). As a result
at least one continuous variable, causes the process to bef insights gained from this project, the language semantics
blocked until the relation becomes true. has subsequently been improved in several aspects.

Correctness of a model of a production system consisting
of four processes has been proved by hand (Kleijn, Reniers
& Rooda, 1998). The system was first simulated xn



4. CASES type hours= real
. vol =[md

Two cases thatillustrate different aspects of hybrid modelling | flow = [m3/hr]
are discussed. The first case is an example of a plant where_ - )
continuous products (liquids) and discrete products (trucks Fig. 1 shoyvs_ _the filling station model structure. The formal
and barrels) are handled. The flow of the liquids is modelled €Xtual definition follows below.
by means of equations, the transportation of the trucks and
barrels is modelled by means of discrete statements, commu-
nication and synchronisation. This example also deals with
stochastic phenomena, since the trucks arrive at irregular
intervals. In this case, emphasis is on the discrete-event
aspects. The second case is an example of a physical process
with discontinuities; it deals with modelling of dry friction.
The model consists of one process only. The model can be in
three states. In each state, different equations are valid. The-. - ,
discrete-event part of the model switches from one state to%lg' 1. System FillingStation.

another. In this case, emphasis is on continuous-time aspectss.yst FillingStation—=

[ TG: TruckGeneratar TQ : TruckQueue

, BT : BufferTank F : Fill

, Q:: —flow, VgT:: —vol
4.1 Filling station , trko : —void, trky : —hours

| TG(trko) || TQ(trko, trk1)
A filling station supplies liquid that is stored in a buffer | BT(Q, Ve, 0.5) | F(Q, ViT, trk1, 0.2, 3.6)
tank of 2 n¥. From this buffer tank, 200 liter barrels can be |

filled with a flow r f 1 liter/s. Trucks with em rrel .
ed with a flow rate of 1 liter/s. Trucks with empty barrels Process declarationG : TruckGenerator declares a process

arrive at the filling station. The time between the arrival of variable TG of t TruckGenerator. The or ]
two subsequent trucks is given by a negative exponential. ariable ot ype lruckioenerator. The processes are

distribution with an average of 0.5 hours. Each truck carries instantiated (created with their actual parameters) after the

exactly one barrel. The trucks line up to await their turn | separator symbol. In this model, each process type is

before the barrel filling station. The buffer tank is supplied instantiated only once; there is one process variable for each
with liquid from a processing plant. The flow is switched on process type. In larger models, there are often many process
when the volume of the buffer tank falls below 1.8 mnd is instantiations of the same type. There could for instance be

switched off when the tank is full. When the flow is switched WO ©f More processes of type BufferTank.

on, the flow rate equals 0.53hour. The time required for  The process definition of TruckGenerator follows below.
connecting or disconnecting a barrel to the filling station is 1
minute. Initially, the buffer tank is empty. Filling of an empty
barrel does not start until there is at least 200 liters available
in the buffer tank.

proc TruckGeneratdirko : = void) =
[ d:— hours dt: hours
| d := nex(0.5)
; *[ Asampled; trko ™ ]
By means of a model, the dynamics of the filling station can |
be anquzed with rgspegt. to the number o.f'truc!<s waiting Declarationd : — hours declares a distributiod that
to be filled and their waiting time. The waiting time of a
truck is defined as the period of time from its arrival until
the pgrrel starts to be .f|IIed. In thl_s simplified example, no d:annot be predicted exactly. Only, tpeobability that the
specific control strategies are required. The trucks are serve : . S e
" . , : outcome is a certain value, or lies in a certain interval,
on a ‘first come first served’ (FCFS) basis, so that the truck . . ) :
. . X is known. An example is the result of throwing a dice.
that arrives firstis servedfirst. If, however, the plantproduced . = .~ . o : )
. ; - Distribution 4 is initialized to the negative exponential
different kinds of liquid, and the number of barrelsonatruck .=~ " . :
: : distribution with an average value oB8Xhours) in statement
that needed to be filled could vary, then different control d = nex(0.5). The negative exponential distribution is often
strategies would be useful. The trucks could for instance be ™ = 7 g P

S . ) —used to model the period of time between the arrival of
served on a shortest processing time first (SPT) basis. ThIStWO subsequent clients in a queue, of the time between two
would mean that if there is more than one truck waiting '

to be served at the filling station, the truck to be served ztrjll;sgg:ﬁgfl;i';ui;e;gfszgle\lnecs' Zpiigrr:lz/epos::r)tljemg)heeratlon
first is the truck that carries the smallest number of barrels p'e op -9

(assuming that the filling times of all barrels are equal). By arrival of the trucks at the filling station is modelled by first

: . . . waiting for the next truck to arriveAsampled). The delta
means of simulation, the different control strategies can then . . . / T
o L2 statemenn\0.34 for instance, waits until the simulation time
be compared. The model of the filling station is discussed

is increased with B34 time units (hours in this case). The
below. . ) ) X
result of sample/ is a ‘random’ value in hours, such that
Below, the types that are used in the model are given. All the average of all subsequent samples convergesstn0
times in the model are specified in hours. the end. After the required time has passedisampled,

returns values of type hours. Distributions are used to model
stochastic phenomena, where the outcome of an experiment



the arrival of the truck is modelled by synchronizing with 1 at time point 0.45 is not logged in the output file. This is
processTQ of type TruckQueue via channtakg (trkg ™). exactly the desired behaviour.
After this synchronization, the loog[ ... ] is re-executed,

beginning with delta statementsampled. ProcessBT of type BufferTank models the buffer tank.

Continuous variable® andQ model the volume of the buffer
ProcessTQ of type TruckQueue models a ‘first come first tank, and the flow from the buffer tank to the filling process,
served’ (FCFS), also called ‘first in first out’ (FIFO), buffer. respectively. Variabl® in proces®BT is equal to variabl®

in process (processtype Fill). The value @f is determined

in processF by equationQ = a - Qset Equality of the two
variablesQ is achieved by means of continuous charéh

proc TruckQueuétrkog : ~ void, trkq : 'hourg =
[ nc:: [—], xs: hours

: )r:g =_ I[e]n(xs) system FillingStation (see the system definition and Fig. 1),
- irko ™ s xSi= xS+ [r] and the linksQ_ —o Q in processe8T andF'. In a similar

way, variableV in proces8BT equals variabl&gT in process
F. Parameteset represents the value of the flow into the
buffer tank when it is being filled.

[ len(xs) > 0; trky ! hd(xs) —> xs:=tl(X9
]
1

The trucks that enter the buffer are stored in list (or queue) proc BufferTank Q_:: —o flow, Vpr_:: —o vol

xs A list is an ordered collection of elements of the same » Oset: real
type. For exampl€0, 7, 7, 2] is a list containing the numbers [V :vol. 0 %I;v
0,7,7, and 2, in that order. Operate# concatenates two T =
lists. For example[O] -+ [7, 7] = [0, 7, 7]. Function hd ’ Qi‘f rea'l .
(head) returns the first element of the list. For example, ’ Viu=0:0i:=0
hd([0, 7. 7. 2]) = 0. Function tl (tail) returns the list without | g— o g
the first element. For example(fi0, 7, 7, 2)) = [7, 7, 2). | VE}T: ; 0
= Qi —

Function len (length) returns the number of elements in the
list. For example le({0, 7, 7]) = 3. Declaratiorxs: hours'
declares a list of elements of type hours. The list is initialized
as empty Xs := [ ]). The buffer is modelled by means of Inputflow Qj is piece-wise constant. Therefore itis modelled
a selective waiting statemeng (.. [] ... ]). At any time by means of a discrete variable, instead of a continuous
point, a truck may enter or leave the buffer. A truck entering variable. Its value is changed by means of assignments
the buffer is modelled by means of the synchronization (Qj := 0 andQ;j := Qse). EquationV’ = Q;j — Q is derived

trko ™. If this synchronization with procesgG succeeds, fromthe mass balance. Thisis possible because the incoming
the ‘entering truck’ is added to liss In this model, onlythe  and outgoing liquids are incompressible and are of the same
arrival time of the truck is actually added to the liss{= kind. The discrete-event part of the process consists of a
xs+[z]). Since all trucks are the same, there is no other loop. First, the incoming flow is switched o@( := Qsey.
information about the trucks that needs to be stored. Symbolin the next statement, the process waits until the tank is
T represents the current simulation time. A truck leaving the full (VV > 2). When expressiolr > 2 becomes true, the
buffer is modelled by means of communication statementincoming flow is switched off Q; := 0). Subsequently, the
trk1 ' hd(xs), where hdxs) is the first truck (in fact the arrival ~ process waits until the level of the tank drops belo8. 1
time of the first truck) in the list. Statemetnk ! hd(xs) can When this happens, the loop is re-executed, and the incoming
only be executed under the condition that the Mists not flow is switched on again.

empty (lerixs) > 0). If the truck has been successfully sent

to the filling process (proces& of type Fill), the truck is the barrel to be filled is represented by continuous varitible

_removed from the I'S.D(S' tx9). Contmuom_Js variablec The pump is modelled by discrete variableThis variable
is used for data logging purposes only. Theimulator logs . ) N
- . ; is of type nat (natural: positive integer).df= 0, the pump
the values of the continuous variables to an output file. In . g : :
. . . . is off, if a = 1, the pump is on (see equatio@s= a - Qset
equatiomnc = len(xs), continuous variablacis made equal Y . :
: and equatiorV’ = Q). Discrete variablegyrive, fsum, Wavg,
tolen(x9). In this way, the logged values at represent the andngym are used to determine the average waiting time of
number of trucks in the buffer. This data is used to create sum 9 9

the graph that shows the number of trucks in the buffer as a® truck.

function of time (see Figure 3). The equations are evaluatedproc Fill( Q_:: —o flow, Vgt _:: —o voI

| [ Qi :=Qset; VV >2; 0i:=0; VV < 18]

The barrels are filled in procegsof type Fill. The volume of

when all discrete actions at the current simulation time point , trk1 : ? hours

have finished. If, for example, the first truck is generated in , Vbarreh Oset: real

processTG at time 0.45, the truck enters the buffénkg ™). ) =

However, immediately thereafter at the same time point, the|[ V, Vgt :: vol, Q :: flow, tWcayg :: [—]
truck leaves the buffertik1 ! hd(xs)). After that, the buffer , tarrives tsum, tWayg : hOUrs a, ngym : nat

process waits for a new truck to enter the buffer. Thismeans; V ::=0; a :=0
that at the end of time point 0.45, the buffer is empty again, | 0 — Q

and equatiomc = len(xs) evaluates tanc = 0. Therefore, , VBT —o VBT
the value ofnc remains 0, and the temporary buffer size of



| Vi=0

s 0 =a- Qset

, tWCavg = tWayg

| tsum:= 0; nsum:=0; tWayg:=0

5 *[ trke ?tarrive
; A1/60; V VBT = Vharrel
; fsum := tsum+ (T — farrive) ; Nsum := Asum+ 1
; Wayg := fsum/Msum
;a:=1;,VV > Vparel; a:=0; V=0
; A1/60
]

1

First, the process waits for the arrival of a truck in receive
statementrky ?arrive. The communication succeeds when
there is a truck in buffer proce3®Q, and the buffer process
executes the send actitnk1 ! hd(xs). As a result, the arrival
time of the truck is stored in variablgive. Next, process

F waits for 1/60 hours (1 minute), which models the time
required for connecting the barrel to the filling station. Then,
the process waits until there is sufficient liquid in the buffer
tank tofill the barrel ¥ Vet > Vparre)- After this, the average
waiting time is calculated. The waiting time of the truck
equalst — farive (the current simulation time minus the
arrival time of the truck at the buffer station). This time is
added to the total waiting time of all truckgm. The average
waiting time is then set to the total waiting time divided by the
total number of trucks that have waite@4yg := fsum/nsum)-
Subsequently, the barrel filling flow is switched an:E& 1).
When the barrel is filledVV > Vparre), the flow is switched
off, and the volumeV is reset tot 0 ¥ ::= 0), so that
the next barrel can be filled. Disconnecting the barrel is
modelled by delay statemert1/60. Continuous variable
tweavg and equatiotwcayg = tWayg are used for data logging
purposes only, in a way analogous to variaften process
TruckQueue.

Figures 2 and 3 show the simulation results.
graph, flow Q shows the filling pattern of the barrels. The
flow equals 36 [m3/hr]. Since filling a barrel only takes

3 minutes approximately, the filling action results in a short
vertical line in the graph. When the trucks arrive shortly after
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Fig. 3. Number of trucks in buffet, and flow to barrelQ
[m3/hr].

The average waiting time of the trucks varies between 0.2
and 0.5 hours. Since this is relatively long, the volume of the
buffer tank or the flow rate of the incoming flow should be
increased.

4.2 Dry friction

Fig. 4 shows a body that can slide along a flat surface. A

Fy

-
-§

Fig. 4. Dry friction.

driving force Fy (Fq = sin 02577, wherer is the current

In the lasttime) is applied to the body. When the body is moving

with positive velocity v, the frictional force is given by
Fi = uFn, whereFy = mg. When the velocity of the body
is 0, the frictional force neutralizes the applied driving force.
If the driving force becomes bigger tham Fy, the body

one another, they have to waitin the queue, and the volume ofsuddenly starts moving according g — Fy = mv', where
the buffer tank decreases. When the time between the arrivalt = #Fn (1 < jo). In process Friction defined below,
of the trucks increases, the queue (truck buffer) becomesdiscrete variables represents the state of the process; it

empty, whereafter the volume of the buffer tank increases.can have the values "neg",
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Fig. 2. Buffer tank volumeVgt [m?], and average truck
waiting timetwayg [hr].

stop”, and "pos" (indicated by
the comment - {"neg", "stop", "pos"} in the model). These
values correspond with negative, zero, and positive velocities
respectively of the body. Variabl\ is declared as a discrete

variable (y : real), because its value remains constant.

proc Frictiom (e, u, wo, m : reah =
[ F, Fa:: [N, x = [m], v :: [m/s]
, Fn :real, s :string —— {"neg", "stop", "pos"}
;x n=—=2;v:=0; Fy:=mg; s := "stop"
| Fg =sin02571
U/
x/

= (Fyg— Fy)/m
=v

’

’

s ="neg" — F; = —uFn
s ="stop" — F; = Fy
s ="pos" — F; = uFyn

’

—_—m =



| %[ s ="stop"; V Fq > uoFN — s := "pos"
V=€
[ s ="stop"; V Fq < —puoFn —> s := "neg"
LV = —¢€
[l s #"stop"; vv=0 —> s := "stop"
]

|

The discrete-event part of process Frictiawonsists of a
selective waiting statemerit(..[1...[] ... ]) thatisrepeated
forever ). If boolean expression = "stop" is true and
driving force Fy becomes bigger than the threshplgFy,

state eventv Fy > uoFn succeeds. As a result, the state Fig. 5. Friction simulation ¢ = 0.1, uo = 0.18,m = 1

switches to "pos"y( := "pos"), causing equatiof; = uFN
to become active in the continuous-time part. The velacisy
then assigned avery small valu ::= ¢) in order to prevent
the state eveny v = 0 from occurring immediately. Now
that the state equals "pos", boolean expressign'stop" is
true. This means that state eveanv = 0 is awaited. When
v becomes equal to 0, the state changes to "stop” again.

Process Frictiopn that follows below, is a more detailed

e =10"° g =10).
4.3 Additional examples

Discrete-time controllers of a nonlinear tank system are
discussed in Van Beek & Rooda (1997a). The nonlinearity is
caused by a saturating actuator in the form of a valve. Several
control strategies are modelled and simulated, including a

model. In this model, a small amount of energy is required Pl controller with anti-windup (Bohn & Atherton, 1995).
to switch from state "stop” to state "pos" or "neg". For this In Van Beek, Gordijn & Rooda (1995), a model of a plant

purpose, a fourth state "try" is introduced.| Hy| becomes
bigger thanuoFn, the state switches to "try". In this state,
the frictional force equalgoFy. If the driving force causes
the velocity of the body to become bigger tharfa small
user defined value, e.g. 18), the state switches to "pos".
If, however, the driving force falls back belowgFy, the

for the biochemical production of ethanol is described.
Detailed models of a conveyor line transportation system
with actuators and sensors and the associated control system
are presented in Van Beek, Rooda & Gordijn (1996) and Van
Beek, Gordijn & Rooda (1997). Finally, a model of a bottle
factory and other examples are presented in Van Beek &

state switches back to "stop". Fig. 5 shows the results of a 10Rooda (1999).

second simulation run for the process Frictiand Friction.

The difference between the results of the two processes is too

small to be shown graphically.

proc Friction (e, wu, po, m : realh =
[ Fi, Fg:[N], x:[m], v:[m/s]
, Fy:real, s :string —— {"neg", "stop", "try", "pos"}
s x = —2;v:=0; Fy :=mg; s := "stop"
| Fg =sin025rt
, V= (Fg— F)/m
X' =v
, [ s="neg" — Fr = —uFn
[ s ="stop" — F; = Fy

I s="try" —> Fy =sign(Fa) - nofn
[ s ="pos" — F; = uFn
]
| %[ s ="stop"; V|F4| > pnoFN
— 5 :="try"
s [ Vu>e — 5 := "pos"
fVvv<e — s :="neg"

0 VIFdl < poFn — s :="stop"; v :=0
]
[ s #"stop”; Vv=0
— s := "stop"

]

5. CONCLUDING REMARKS

The proposed new classification of modelling languages into
CT, CT+, DE, DE+, and CT/DE categories gives a better
insight into the diversity of the so called hybrid modelling
languages and simulators. The classification into different
categories does not imply that languages from one category
are better than languages from another. Depending on the
type of applications that a modeller deals with, he or she
should choose a language that fulfils his or her needs best.
The CT/DEy language and simulator have a wide field of
application. They have been successfully applied to a large
number of complex industrial cases, such as an integrated
circuit manufacturing plant and a beer brewery.
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