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Abstract

Different modeling formalisms for timed and hybrid systems exist, each of which
addresses a specific set of problems, and has its own set of features. These for-
malisms and tools can be used in each stage of the embedded systems development,
to verify and validate various requirements.

The Compositional Interchange Format (CIF), is a formalism based on hybrid
automata, which are composed using process algebraic operators. CIF aims to
establish interoperability among a wide range of formalisms and tools by means of
model transformations and co-simulation, which avoids the need for implementing
many bilateral translators.

This work presents the syntax and formal semantics of CIF. The semantics is
shown to be compositional, and proven to preserve certain algebraic properties,
which express our intuition about the behavior of the language operators. In ad-
dition we show how CIF operators can be combined to implement widely used
constructs present in other timed and hybrid formalisms, and we illustrate the ap-
plicability of the formalism by developing several examples.

Based on the formal specification of CIF, an Eclipse based simulation environ-
ment has been developed. We expect this work to serve as the basis for the formal
definition of semantic preserving transformations between various languages for
the specification of timed and hybrid systems.
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Figure 1: Multiple model transformations without an interchange format.

1. Introduction

1.1. Background

Controller software has become an artifact that is present in a wide range of em-
bedded systems. Embedded software programs must interact with physical com-
ponents, and contain a high degree of parallelism. In addition, they must meet
critical safety, liveness, and performance requirements. All this makes the design
of embedded software a difficult task, which calls for a model based approach that
enables validation and verification via modeling.

Embedded systems combine the discrete essence of the software, and con-
tinuous aspects of the physical environment. Therefore, timed and hybrid for-
malisms [1} 2} 13], which are designed to combine computational, timed, and phys-
ical aspects of a system in one formal model, arise as the natural candidates for
specification, verification, and validation of embedded system software.

But there is no panacea: different modeling formalisms for timed and hybrid
systems exist. Each of these formalisms addresses a specific set of problems, and
has its own set of features. Moreover, several formalisms and tools can be used in
each stage of the embedded systems development, to verify and validate various
requirements. This led to the need for integrated tool support for the design of
large complex controlled systems, from the first concept to the implementation,
and further on, over their entire life cycle.

The Compositional Interchange Format (CIF), is a formalism based on hybrid
automata, which are composed using process algebraic operators. CIF aims to
establish interoperability among a wide range of formalisms (and tools) by means
of model transformations to and from CIF. In this way, the implementation of
many bi-lateral translators between specific formalisms can be avoided, as shown
in Figs.[T]and [2|

CIF, being an interchange format, has a number of distinctive features [4} 5]:
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Figure 2: Multiple model transformations using an interchange format.

interchange
format

e It has a formal and compositional semantics, and thus it allows definition
and proofs of property-preserving model transformations.

o It has concepts based on mathematics, which are independent of implemen-
tation aspects such as numerical equation sorting algorithms.

e It supports arbitrary differential algebraic equations.

e [t incorporates concepts from hybrid automata theory and process algebra,
such as parallel composition, different kinds of urgency and synchronization
by means of shared variables and shared actions.

o It supports modularity, allowing to declare actions and variables local to a
module.

o [t supports large scale systems modeling by means of parameterized process
definition and instantiation (reuse, hierarchy). Recently, CIF was extended
with superstates [6]. Such an extension is not considered in this work.

All concepts in CIF have a formal and compositional semantics. As stated in
Section [5] a formal semantics has several advantages: it gives a precise meaning
to CIF specifications, it facilitates the precise specification of models, it provides a
reference against which implementations can be judged, and it enables the formal
definition and proof of semantics-preserving model transformations. In addition,
theoretical results are only possible if they rely on a formal semantics.

The semantics of CIF is defined via structured operational semantics (SOS) [7]
rules. The reason for using operational semantics in an automaton-based frame-
work is that model transformations to and from CIF are not only executed on “com-
plete” models, but also on components of bigger models. Thus, it is crucial that
the CIF semantics is compositional, which we ensure by requiring bisimulation
(equivalence) to be a congruence for all the CIF constructs. This is guaranteed
using the process-tyft format of [§]].



1.2. Related work

Related work on interchange formats for hybrid systems is the following:
e A Hybrid System Interchange Format (HSIF) [9], in the MoBIES project.

e An abstract semantics of an interchange format based on the Metropolis meta
model [10], as a continuation of the COLUMBUS project [11].

e An interchange format for switched linear systems [[12] in the form of piece-
wise affine system (PWAs), in the HYCON NoE [13]] project.

An overview of these formalisms is given in [14]. Next we present a summary of
this overview.

In HSIF, a network of hybrid automata is used for model representation. The
network behaves as a parallel composition of its automata, without hierarchy or
modules. Variables can be shared or local, and the communication mechanism is
based on broadcasting of boolean signals, where signals are partitioned in input and
output signals. Each signal is required to be either a global input to the network
or to be modified by exactly one automaton. The semantics is defined only for
“acyclic dependency graphs” with respect to the use of signals. The interchange
automaton format defined in this article aims to be more general than HSIF, and
does not incorporate tool limitations, such as restrictions on circular dependencies,
or restrictions on shared variables and algebraic loops, in its compositional formal
semantics.

The abstract semantics presented in [[10], takes implementation considerations
into account, such as equation sorting, iterations that may be required for state-
event detection, and iterations for reaching a fixed-point in case of algebraic loops.
The semantics of CIF, defined in Section [5] defines mathematically the semantics
of hybrid automata, in a compositional way, independently of tool limitations and
implementation aspects, such as equation sorting or event detection.

In the HYCON NoE [13] an interchange format for switched linear systems
was defined [12f]. This interchange format is based on piecewise affine (PWA)
systems. Several tools, based on among others PWA, HYSDEL, MLD (see [13]
for an overview relating these languages) have been connected to this interchange
format. CIF is a much more general interchange format. The relation between
PWA systems and (linear) hybrid automata is defined in [16]].

1.3. Overview of work on CIF

Figure [3] gives a concise overview of past and present work on CIF in several
European and national (Dutch) projects, in particular the HYCON and HYCON?2
networks of excellence [13}[17]], the ITEA2 Twins project [18]], the national Darwin
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Figure 3: Overview of work on CIF.

project [[19], and the FP7 C4C and Multiform projects [20, [21]]. The following
languages and tools from Figure|3|are currently connected to CIF:

1.

Modelica and gPROMS: For IPDAE (Integral and Partial Differential Alge-
braic Equations) modeling and simulation, translations between CIF and the
advanced modeling languages Modelica and gPROMS are available [22}[23]].
This significantly increases the applicability of CIF in industrial practice.

. MUSCOD-II: A connection of continuous CIF models to the dynamic sim-

ulation environment MUSCOD-II has been developed. This allows to inter-
face to optimization-based synthesis tools [24].

. Uppaal: A semantic preserving transformation from CIF to Uppaal has been

defined in [25]]. The implementation is described in [26]]. The CIF-to-Uppaal
transformation has been used, for example, to verify liveness properties of
a synthesized supervisory controller of a patient support system of an MRI
scanner as described under item 7L

. SpaceEx: A transformation between CIF and SpaceEx was developed for

model checking of hybrid CIF models [27]].

. Matlab/Simulink: A Matlab toolbox and a Simulink integration component

were developed that allows to simulate CIF models directly from the Matlab
command line, and in principle also from within Simulink models [28]]. The
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Figure 4: Supervisory controller synthesis via CIF with verification in Uppaal.

latter requires an additional S-function [29] interface.

6. Sequential Function Charts: A transformation of SFCs to CIF is defined in
[30]. Sequential Function Charts is one of the languages defined in the IEC
61131-3 standard [31]] for logic controller design.

7. Supervisory control synthesis tools: several transformations have been de-
fined to allow different supervisory control synthesis tools to share the same
CIF input specifications for plant models and (event-based) control require-
ment, and to share the same CIF output for the synthesized supervisory con-
trollers. The generated CIF supervisory controllers can be used, among oth-
ers, for simulation-based testing and for real-time control [32,(33)[34]]. The
CIF-based supervisory controller synthesis tool chain was tested by means
of simulation and real-time control on an actual patient support system of an
MRI scanner [35]]. Figure[dshows the automatic toolchain that has been used
for controller synthesis. Supervisory control synthesis guarantees safety and
nonblockingness by restricting behavior. By means of subsequent Uppaal
verification, liveness properties can be checked. Note that the supervisory
control requirements can also be defined by means of the visual Hierarchical
Cause/Effect Charts editor, as described in [36]].

Connection of the other tools from Figure [3]is still work in progress. Some of
the connections of CIF to other tools shown in the figure, such as the connection to
EtherCAT for real-time control [37], are still based on the old version of CIF, CIF1
[14]]. New developments are based on CIF2 [38, 39, 40]

The transformation framework used for model transformations to and from CIF
is based on OMG [41]] standards: Class diagrams, in the form of Ecore metamo-
dels, are used for the conceptual definition of CIF; QVTo is used as the model to
model transformation language; and Acceleo is used as the model to text (code)



transformation language [42 43]].

The use of a transformation language, such as QVTo, has as advantages that
transformations are specified at the problem domain instead of coded at the imple-
mentation level, that implementation efforts are reduced and transformations are
more robust for changes. For defining chains of transformations, the ToolDef [42]
language has been defined. A syntax aware ToolDef editor has been generated
by means of EMFText [43]. The editor provides among others integrated parsing,
static semantic checking, syntax and occurrence highlighting, and code folding,
see the examples in Figures [5]and [6]

0
a

/| tank tooldef 5%
1 import "platform:/plugin/nl.tue.cif.vixlxl.tooldefs/cif. tooldef"

3= toolchain tank =

4 |[ ( toolinst cifascii2 cifasciil(”tank.cif*, 'tank_cifllin.cif")
5 ; toolinst exec(®cifc tank cifllin.cif')

6 ; toolinst exec(”simcif -a 10 -tl tank_cifllin.core.cifx')

[«

)
]|
(T

Figure 5: ToolDef tool chaining example.

4l ciftooldef &
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616 // Linearize a Core CIF 2.1.1 model.

7= tooldef cif_linearize(var cifModel: Hodel) =

2 |[ return toolinst cif_linearize_internal(cifModel, false)
1

tooldef cif_linearize_debug(var cifModel: Model) =
2 | return toolinst cif_linearize_internal(cifModel, true)

tooldef cif linearize internal{var cifModel: Model,
var debug: Boolean) =

Il { toolinst cif core_check({cifModel) K

; cifMedel := toolinst qute(“nl.tue.cif.v2xlxl, linearization:transforms/linearization.quto”
cifModel)

; if debug then save(cifModel, "tmp.lin.cifx') fi

; toolinst cif_lin_check(cifModel)

return cifModel

@I

Figure 6: ToolDef tool specification example.

Beside being used for model transformations, CIF can also be used as a stand-
alone modeling and simulation formalism for timed and hybrid systems. An
Eclipse-based [44] tool set has been developed that provides a user-friendly envi-
ronment for simulation, analysis, design, and for the definition of model transfor-
mations [45]. The CIF simulator was developed on the basis of the SOS (structured
operational semantics) specification of the language [46]. To support hierarchical
model development via stepwise refinement, CIF was recently extended with and-
or superstates, leading to hierarchical CIF (HCIF) [6]. Simulation of HCIF models
is possible via a HCIF to CIF transformation, which eliminates the and-or super-
states by flattening the model. CIF models can be expressed using a textual notation
(Figure [7), or a graphical notation (Figure [§). Simulation runs can be visualized
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Figure 7: CIF textual editor

using a Scalable Vector Graphics visualizer (SVG) [47]] as shown in FigureE[ Most
of the CIF tools are open source, and available via [40].
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Figure 8: CIF visual editor
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The goal of this paper is to present the core concepts of CIF, and their specifi-

cation by means of a formal semantics. In doing so, novel operators are introduced,
such as synchronization and control. The semantics is validated by showing that it
is compositional, and that it preserves certain algebraic properties, which express
our intuition about the behavior of the language operators. In addition we show
how CIF operators can be combined to implement widely used constructs present
in other timed and hybrid formalisms.
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Figure 9: CIF SVG visualizer.

The structure of the paper is as follows. Section[2]presents the CIF syntax, both
informally and formally. To be able to explain CIF semantics, and to get a better
insight of the concepts involved, Section (3| develops the semantic framework. In
Section[d]the language is explained informally, and the formal semantics is given in
Section [5} The semantics is validated in Section[7} In Section[8] CIF is illustrated
by means of several examples. Concluding remarks are presented in Section 9]

2. Syntax of CIF

This section presents the syntax of CIF. The basic building blocks of CIF are
automata. They resemble the hybrid automata as presented in [48]], which model
computational and physical behavior of a system by mixing automata theory with
the theory of differential algebraic equations.

Informally, a basic CIF automaton is shown in Figure[I0} which models a con-
veyor belt carrying bottles to be filled. Graphically, the name of the automaton
(Conwveyor) is specified in a box, placed above the top-left corner of the rectangle
that encloses the drawing of the automaton. The volume of the bottle (V) cannot
exceed the maximum allowed volume (V;,,4;). The rate at which liquid enters the
bottle is represented by variable (). A clock c is used to ensure that A time units
will elapse between the filling of two bottles, where A is some positive constant.
The automaton consists of two locations, Moving and Filling, which are depicted
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when true act close do ({c},ct = 0)

Figure 10: Model of a conveyor (without operators).

as circles. Locations represent the computational states of a system. Every location
contains a predicate called invariant, which must hold as long as the system is in
that state; and a time can progress (tcp) predicate, which must hold during time
delays. In the example of Figure [I0] location Moving has the predicate ¢ = 1 as
invariant, and the predicate ¢ < 2 x A as tcp. Location Filling has the invariant
Ve < Vi A Vg = Q, and the tcp predicate true. Invariants can be used, for
instance, to specify differential algebraic equations. In this way, it is possible to
model the physical behavior of a system in a particular computational state. Local
urgency conditions can be defined using tcp predicates.

Edges represent discrete changes in the computational state of a system. An
edge has a source and a target location, and its execution results in a change of
location (unless the edge is a self loop). The automaton of Figure |10| has two
edges, which are depicted as arrows (the arrows point to the target location). Every
edge contains a predicate called guard (A < c and true, respectively, in Figure[10)
that determines under which conditions a transition can be executed, a predicate
called update (Vér = 0 and ¢ = 0, respectively, where T denotes the value of
variable x in the next state) that determines how the model variables change after
performing the action, and a set of jumping variables ({Vp} and {c}) that specify
the variables that are changed by the action. Edges are labeled by actions (open
and close in Figure[10) that may be used to synchronize the behavior of automata
in a parallel composition. Finally, every location has an initialization predicate
associated to it, which describes constraints that the initial values of variables must
satisfy if execution is to start in that location. Note that this predicate can be used
to specify the initial locations of an automaton. In Figure [I0} location Moving
has ¢ = 0 as its initial condition (depicted as an small incoming arrow without
source location), and location Filling has the predicate false as initial condition
(depicted by the absence of such an incoming arrow), which means that execution
cannot begin in that computational state. Section[4.]explains the semantics of CIF
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automata in detail.

Following CIF concrete syntax, an arrow from location v to v' labeled
when g act a do (W, v), represents the edge (v, g, a, (W,r),v"). If the guard dec-
laration is omitted (when g part) then it is assumed to be true. If the action is
omitted (act a part), it is assumed to be the silent action 7. If the update is omitted
(do (W, r)) part, then it is assumed to be (), true).

Additional components of an automaton (not shown in the example presented
here) include: a set of control variables, a set of synchronizing actions, and a dy-
namic type mapping. Intuitively, control variables are those variables that can only
be modified by the automaton that declares them, and they do not change arbitrar-
ily after performing an action. The set of synchronizing actions is used to specify
which actions are to be synchronized when the automaton is composed in parallel.
The concept of dynamic types is used to model constraints in the joint evolution of
a variable and its dotted version. In CIF a dynamic type is a set containing pairs
of functions, whose domain is a closed range of the form [0, ¢], with t € T (see
Definition ). Notation T is used to refer to the set of all time points. Examples
of dynamic types used in this work include discrete, continuous, and clock. In-
formally, if a variable x is of type discrete, then its value must remain constant in
time delays, and 7 is always zero. On the other hand, the value of a continuous
variable changes as a continuous function of time, and its dotted version represents
its derivative. If a variable c is of type clock, then during time delays its value
evolves (as a function of time) at rate 1. Section [4.2] provides more details. The
syntax of these components is given in Definition [5] and their associated concepts
are explained in Section 4}

Formally, the locations of CIF automata are taken from the set £. Actions be-
long to the set A. We use the symbol 7 (7 ¢ A) to refer to the silent action, and
we define A, £ A U {7}. We distinguish the following types of variables: reg-
ular variables, denoted by the set V; the dotted versions of those variables, which
belong to the set V 2 {& | 2 € V}; and step variables, which belong to the set
{zt |z e VU V} Variables are constrained by equations and we implement them
as predicates. The values of the variables belong to the set A that contains the sets
of booleans B, and reals R, among others. Guards are taken from the set P,; ini-
tialization predicates, invariants, and tcp predicates are taken from the sets P;; and
update predicates are taken from the set P,.. Expressions are taken from the set £.

To formally characterize the set of all dynamic types, we need to define some
operators on trajectories [49]. In the context of the current work, a trajectory is a
function that maps time points onto valuations, and a valuation is a function that
maps variables onto values. Given a trajectory p with domain [0, ¢], and a time point
s, s < t, the prefix operator returns a trajectory that equals p up to s. Similarly,
given a time point s, the postfix operator allows to construct a valuation that equals

11



p in the time interval [s, ¢]. The formal definition of these operators is given below,
where given a function f, and a set A, f [ 4 is the restriction of f to A.

Definition 1 (Trajectory prefix operator). Given a time point s € T, and a tra-
jectory p : [0,t] — A, such that s < t, function p=* is defined by means of the
following equality:

<s A

p="=p o,

Definition 2 (Trajectory postfix operator). Given a time point s € T, and a trajec-

tory p : [0,t] = A, such that 0 < s < t, function p=* : [0,t — s] — A is defined
by means of the following equality:

PP0) 2 plr +5)
forallr € 0,t — s].

For the automaton postfix operator note that p=*(0) = p(s) and p=*(t — 5) =

p(t).
Finally, the concatenation operator allows to form a new trajectory by gluing
two trajectories together.

Definition 3 (Concatenation operator). Given two trajectories p : [0,t] — A and
p':[0,t'] = A, such that p(t) = p'(0), function p -+ p’ : [0,t +t'] — A is defined

as follows:
o afels) s <t
<ptp><s>—{p,(s_t) o

Using these definition we can now formally define the set of all dynamic types,
where we use A — B to denote the set of partial functions from A to B, and
dom(f) is the domain of function f.

Definition 4 (Dynamic Types). The set D C 2T=0x(T=A) of dynamic types is
the least set that satisfies for all G € D:

1. forall (f,g) € G such that dom(f) = [0,t], and for all s < t, (f<5,g=%) €
G.

2. for all (f,g) € G such that dom(f) = [0,t], and for all 0 < s < t,
(f=*.9%°) €G.

3. forall (f,g) € Gand (f',qg') € G such that dom(f) = [0,¢t], dom(g) =
[0,5], f(t) = f'(0) and g(s) = g'(0), we have (f -+ [',g s ¢') € G.
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Such a definition of dynamic types is required to prove the properties of prefix
and postfix closure, and the property of state. Analogous restrictions are required
in the setting of hybrid I/O automata [S0].

The exact syntax and semantics of predicates and expressions are left as a pa-
rameter of our theory, as we are not interested in the computational semantics of
CIF in this paper. We do require however a minimum set of properties that have to
be satisfied by the predicates. In the examples presented here, and in the tool im-
plementations of CIF, P,, P;, and P, are terms of the language of predicate logic
[51], where for P, and P; the variables are taken from the set VU V, and for P,, the
variables are taken from the set VUV U {2z | 2 € VUV}. As for expressions, the
set £ is usually instantiated with the set of arithmetic expressions. Given an expres-
sion e and a value v, we assume e = v to be an element of P;, i € {g,¢,7}; and we
assume that the predicates are closed under conjunction. Using these preliminaries,
a CIF automaton is defined next.

Definition 5 (Automaton). An automaton is a tuple
(V,init, inv, tcp, E, varc, actg, dtype)

where V. C L is the set of locations; init,inv,tcp: V. — Py are functions that
associate to each location its corresponding initialization predicate, invariant, and
tep predicate, respectively; E C 'V x Py x A X (2YWY xP,) XV is the set of edges;
varc C V is the set of control variables; actg C A is the set of synchronizing
actions; and dtype € V — D is the dynamic type mapping.

Starting from an automaton, more complex models can be constructed by
means of different operators. These include parallel composition, to model concur-
rent execution of systems; the synchronization operator, to declare synchronizing
actions in a parallel composition; the initialization operator, to specify the initial
conditions of a system; the variable scope operator, to declare identifiers as local;
the urgency operator to declare actions as urgent; the dynamic type operator to
associate dynamic types to variables; and the control variable operator to declare
variables as controlled. Section [3|presents in detail the informal semantics of these
operators. We use the term composition to refer to a model that contains zero or
more of these operators. The set C refers to the set of all compositions, and is
formally defined as follows.

Definition 6 (Compositions). The set of all compositions is defined by the abstract
grammar ofTable Where a € A, u € Py, x € V, e € EU{L} (L is used to
denote the undefined value), a, € A., and G € D.

The next sections explain, informally and formally, the semantic of CIF mod-
els.
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Ci= « automaton
| C|IC parallel composition
| ctrl,(C) control variable operator
| ..(C) urgency operator
| Ds.q(C) dynamic type operator
| u>C initialization operator
| 7.(C) synchronization operator
| |vz=edx=e::C] variable scope operator
| Jaa:=C] action scope operator

Table 1: CIF abstract grammar.

3. Semantic framework

In this section, the semantic framework is set up, which allow us to properly
explain the semantics of CIF. First we present the concepts of variable valuations
and flow trajectories. Next we describe the hybrid transition systems, which are
used to model the semantics of CIF compositions. Finally, a formal definition of
this semantic model is given.

3.1. Preliminaries

Semantically, the execution of a model causes changes to the values of the vari-
ables appearing in it. Thus, in the semantic framework it is necessary to represent
the values of the variables in a particular instant. For this purpose, we use the
concept of valuation, which is standard in semantics of processes with data. A val-
uation o : (VUV) — A is a function that for each variable returns its corresponding
value. We use notation ¥ = (V U V) — A to refer to the set of all valuations.

Even though predicates are abstract entities, we assume that a satisfaction rela-
tion o |= w is defined, which expresses that predicate u € P, U P, U P, is satisfied
(i.e. it evaluates to true) in valuation o. For predicate logic, this relation can be
defined in a standard way (see [51] for example). For a valuation o, we define
ot 2 {(vt,e)]| (v,c) € o}

In CIF, the values of variables change as the result of the execution of discrete
actions, or as the result of time delays. The edges of the automata determine how
the values of variables change after performing an action, and invariants specify
how the values of variables evolve as time passes.

To model the evolution on the values of variables during time delays we use the
concept of variable trajectories. A variable trajectory is a function p: T — X that
returns the valuations of the variables at each time point. In other words, p(s)(z)
is the value of variable x at time s along trajectory p. We assume the domain of
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variable trajectories to be closed intervals, i.e. intervals of the form [0, ¢], where
teTand 0 < t.

In the examples presented here, and in the semantic rules for dynamic types, we
refer to the evolution of a particular variable during time delays. From a variable
trajectory p it is possible to reconstruct the evolution of a variable during the time
delay that spans dom(p). Given a flow p, the evolution of a variable = during time
delay dom(p) can be seen as a function p, : dom(p) — A, such that for each
time point s we have p,(s) = p(s)(z). In this way, p.(s) represents the value of
variable = at time point s. Having presented the basic concepts of the semantic
framework, we explain next the semantic model for CIF compositions.

3.2. Hybrid transition systems

The semantics of CIF compositions is given in terms of SOS rules, which in-
duce hybrid transition systems (HTS) [52]]. The states of the HTS are of the form
(p, o), where p € C is a composition and o is a valuation. As we stated earlier,
valuations are used to capture the phenomenon of discrete change in the values of
variables caused by the execution of actions in an automaton. There are three kind
of transition in the HTS, namely, action, time, and environment transitions. We
describe them in detail next.

Action transitions are of the form (p, o) LN (p',0’), and they model the
execution of an action a by composition p in an initial valuation o, which changes
composition p into p’ and results in a new valuation ¢’. Label b is a boolean that
indicates whether action a is synchronizing, and label X is the set of control vari-
able{] of p and p’. The term active locations is used to refer to the set of locations
for which the initialization predicate holds. After an action is performed a unique
active location is picked.

As an example, consider the conveyor belt automaton shown in Figure[TT] and
the initial valuation {(c¢, A + 1), (Vg,7)} (we use set notation for representing
valuations, and only the relevant variables are shown). It can execute action open
since the guard is true. After executing the action the active location changes to
Filling, which is represented by changing the init function so that it returns true
for location Filling and false for location Mowving. The resulting automaton is
shown in Figure (12} and a possible new valuation is {(c, 15), (V,0)}. Note that
the value of c is changed arbitrarily after performing the transition. This is because
variables in CIF are not controlled by default, which means that their value can
change arbitrarily when a new value is not specified in the update predicate. If we
denote the automaton of Figure [11|as Conveyor|[Moving], and the automaton of

!Control variables are explained in Section
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Figure12|as Conveyor|Filling], this transition can be depicted as
(Conveyor[Moving],{(¢, A +1),(Vs,7)}) openfalse D,
(Conveyor|Filling], {(c, 15), (Vp,0)}).

Note that in the previous transition, the synchronization label is false because
actions are non-synchronizing by default.

Conveyor|[Moving|

when A < cact opendo ({Vp}, Vg™ = 0)

. Filling
true . 'Movi”g A tep : true
v o=l v sV € Vi 1
' Ve =@

when true act close do ({c},ct =0)

Figure 11: Model of a conveyor with initial predicate true.

Conveyor|Filling|

when A < cactopendo ({Vp}, Vg™ =0)

Fillin,
M()’U’HLg 9
P c<2xA Ccp ue
P t
. . VB < Vinaz A
mv: c= mv V

when true act close do ({c},c™ = 0)

Figure 12: Conveyor in the filling state, after executing open action.

Time behavior is captured by time transitions. Time transitions are of the form
A0 . .. .
(p,o) ®=5 (p/,0"), and they model the passage of time in composition p, in an

initial valuation o, which results in a composition p’ and valuation ¢’. Function
p is the variable trajectory that models the evolution of variables during the time
delay. Function § : T — 24 is called guard trajectory [53], and it models the
evolution of enabled actions during time delays. For each time point s € dom(6),
the function application 6(s) yields the set of enabled actions of composition p at
time s. For every time transition p, dom(p) = [0, ], for some positive time point
t € T, and dom(p) = dom(#). Finally, label A contains the set of synchronizing
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actions of p and p’ ﬂ When time passes a unique location is picked.

Consider the automaton Conveyor (Figure [I0), in initial valuation
{(¢,0),(VB,1)}. Suppose the automaton performs a time delay of 2 time units.
Figure [13alshows a possible evolution of variables c and Vg during the time delay,
i.e. p. and py,,. Figure[I3b/shows the evolution of the guard trajectories, encoded
in function . At the beginning there are no actions enabled, but after A (A < 2)
time units, the set of enabled actions changes to {open}.

VB

{open} —

T 0 T
A 2 A 2

(@) (b)

Figure 13: Example of trajectories during a time delay. |(a)| Variable trajectory.
Guard trajectory.

After the time delay, the init predicate of the automaton Conveyor is changed
from ¢ = 0 to true, which represents the fact that location Moving was picked. It
is necessary to replace this predicate by true, otherwise, after the time delay shown
here, the initialization predicate is false and the automaton has no initial locations.
At the end of the delay, the new valuation becomes {(c, 2), (Vp,1.9)}. The time
transition that describes this delay is written as follows:

(Conveyor,{(c,0),(Vg,1)}) P04 (Conveyor[Moving], {(c,2), (Vp,1.9)}).

To model parallel execution of compositions, we need the notion of environ-

ment transitions, which are transitions of the form (p, o) A, (p',0’), and they
model the fact that composition p (p') is consistent (see Definition (7)) in valuation
o (0'). Label A is the set of synchronizing actions of p and p’. Intuitively, envi-
ronment transitions express which state changes by the environment are allowed.
Consistency is defined recursively as follows.

Definition 7 (Consistency). Given a valuation o, we define consistency as follows:

’The set of synchronizing actions is not changed by transitions.
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e An automaton (V,init,inv, tcp, E, varc, actg, dtype) is consistent in o if
there is a location v € V such that o |= init(v) and o |= inv(v).

e Composition p || q is consistent in valuation o if p and q are consistent in
valuation o.

e Composition ||y x = ey, & = e; :: p || is consistent in valuation o if there are
values vy and vy, such that (o |= (e; = v;)) Ve, = L, i € {0,1}, and p is
consistent in valuation {x — vo, T — v1} = o, where, given two functions

f:A—=Candg: A— C, function f = g : AU B — C is defined as

Sfollows:
_ ) f(x) ifzedom(f)
fra = {gm i € dom(g) \ dom(f
The variable scope operator |y _,_ :: _ || is defined in Section[5.8}

e For the remaining operators the definition of consistency is extended point-
wise.

We use notation o |= p to denote that composition p is consistent in valuation
0. Alternatively, we say that o is consistent with p.

As an example, consider the automaton Conveyor|[F'illing], depicted in Fig-
ure 12} and initial valuation {(V,4)} (as in the previous examples we only show
in the valuation the variables relevant for the example). Assume V4, = 10. Tran-
sition

0
-3

(Conveyor[Filling],{(Vs,4)}) (Conveyor[Filling],{Vg,8})

models the fact that the value of V5 can be incremented by 4 units, given the fact
that the invariant is preserved.

Having informally explained the basic ideas behind the HTS induced by the
semantic rules, we give next the formal definition of these transition systems.

Definition 8 (Hybrid Transition System). A hybrid transition system (HTS) is a
tuple of the form (Q, A, — ,—>,--») where Q 2 C x ¥, = C Q x (A, x B x
2% Q, —C Qx ((T = %) x 24 x (T — 24) x Q, and --+C Q x 24 x Q.

Even though fully formal, these definitions help to understand better the con-
cepts to come. In the next sections, the semantics of CIF is explained informally,
and in Section [5|formal definitions are provided.
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4. Informal semantics

In this section we explain CIF by means of a bottle filling line, which is de-
picted in Figure [T4] It consists of a storage tank that is continuously filled with a
flow @y, and a conveyor belt that supplies empty bottles.

We construct the example incrementally. First, the semantics of the conveyor
belt model of Figure [I0] is informally explained. Next, operators are added to
modify its behavior in a convenient way. When we describe parallel composition,
the model of the liquid tank is presented, which will complete the bottle filling line
model.

Qin

o

Vr

MQ¢

%

(@

Figure 14: Bottle filling line.

4.1. Automata

In this section we explain informally the semantics of the automaton introduced
in Figure [I0] by showing a run of the system described by it.

Initially, the execution of the automaton can only begin in the location Moving,
in an initial valuation in which ¢ = 0. Assume A = 1.5. This means that no action
is enabled at the beginning, and only time can pass. Since the system is in location
Moving, the value of variable ¢ will evolve according to equation ¢ = 1, whereas
the remaining variables can assume arbitrary values (remember that ¢ is not defined
to be the derivative of c yet).

Figure [15] shows one of the possible evolutions of the values of the variables
c and ¢ as a function of time (the other variables are not shown to keep the plot
readable and the explanation simple). The time points at which discrete actions
take place are marked in the x-axis with the name of the corresponding action,
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and a dotted vertical line. Notice that when actions are performed a variable can
have two values: one before, and one after the action. This is because the values
of variables change (jump) on action transitions. The x-axis represents the time
points, and the y-axis the values. The curly braces above the plot show the locations
where the automaton is at a given time.

Mowing Filling Mowving

T
|
|
|
|
|
1
1
|
|
|
|

e

-

0.63 open

Figure 15: Conveyor run.

Figure [I5] shows that during the time delay the value of ¢ remains constant
according to the equation ¢ = 1, and the value ¢ can change arbitrarily (in the
figure we have chosen a random function to represent this behavior). After a delay
of 0.63 time units the guard A < ¢ becomes enabled. However, in this particular
run, the action is not executed immediately since actions are non-urgent by default.

At time 2 condition A < ¢ still holds, and action open is executed. This causes
a jump in the values of both ¢ and ¢. Since the update condition does not constrain
the new values of these variables, they can take any values. However, the value of
Vg (not shown in the figure) cannot change arbitrarily, since the update predicate
enforces that Vg = 0 holds after the action.

Once in the location Filling, the system performs another delay. Here the
values of c and ¢ change randomly, since they are not constrained by any equation.
However, the values of Vz and @ must be the same during this delay, since the
evolution of these values has to satisfy the predicate (equation) Ve =Q.

After a certain time, action close is executed. This causes the value of variable
c to change to 0, as required by the update predicate. Note that the value of ¢ has
to change to 1 to satisfy the invariant. The values of the remaining variables can
jump arbitrarily.

When location Mowving is entered again the variables behave in a similar way
as described before. Notice that we depict the evolution on the value of ¢ during
time as a continuous function, but since its behavior is not constrained, all kinds of
trajectories are possible.

20



4.2. Dynamic type operator

In principle, during a time delay, the values of variables can change arbitrarily
as long as they satisfy the invariants and tcp predicates, as we saw previously. This
is not always desired. Consider the conveyor model, which has the variable ¢,
which represents the derivative of c. We do not want the values of ¢ and ¢ to evolve
independently as time passes. That is, given a flow p, we would like function p.
to be a derivable function of time, and function p; to be the rate of change of the
value of p.. Flows and invariants are not enough for ensuring this.

In hybrid formalisms, the evolution of the values of variables is constrained by
declaring a variable to be of a certain dynamic type [50]. Informally a dynamic
type specifies how the values of variables are allowed to change as time passes.
The most common dynamic types that can be associated to a variable are discrete,
continuous, and algebraic. The value of a discrete variable x remains constant in
time delays, and & is the zero function. Given a continuous variable x, p; is the
derivative of p, for any variable trajectory p. The values of algebraic variables can
change arbitrarily during time delays.

In CIF, a dynamic type is a set of pairs of functions from time points to values.
For instance the discrete dynamic type G g4;sc can be defined as follows:

Gaise ={(f,9) [(3t : 0 < t :dom(f) = [0,#] = dom(g) A
(vd,d' :d,d €[0,4] : f(d) = f(d') Ag(d) =0))}

Similarly, the clock dynamic type G ., is defined in the following way:

Gclock é{(‘ﬂg) ‘(Elt 0<t dom(f) = [Ovt] = dom(g) N
(Md:del0,t]: f(d) = f(0)+dAg(d) =1))}

And the continuous dynamic type Gcont can be defined as follows:
Geont = {(f,9) | f is continuous in [0, ] A g is the derivative of f in [0, ]}

Notice that, unlike other hybrid formalisms [54], the dynamic types of CIF do
not constrain the discrete (jumping) behavior of a variable. Instead, we use the
concept of control variables, as explained in Section [4.3]

In the conveyor model example, we want to associate continuous dynamic
types to variables ¢ and V3, since we would like predicates ¢ = 1 and Vg = Q to
be interpreted as differential equations. On the other hand, we would like variable
Vinax» Which represent the maximum volume of a bottle, to be a constant. Note that
we do not pose any constraint on variable (), as we will need this when putting
the conveyor model in parallel with a tank model in Section[#.4] According to the
syntax of CIF, these dynamic types can be declared as shown in Equation

D{C:Gcant VB :Geont 7Vmuw :Gdisc} ( Con(l}eyor) (1)
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where we use notation:
D{mO:Gg,...,znfl:anl}(p)
as a way to abbreviate the nesting of several dynamic type operators

Dag:Go((- - Dayy 126 i (P) -+ 2)-

Alternatively, these dynamic types can be specified as a part of the automaton.
We have chosen to use operators instead, to explain the concepts in a stepwise
manner. The usefulness of operators will be illustrated in Section [§]

For the conveyor example, if we declare the dynamic type of variable c to be
continuous then the evolutions shown in Figure [15]are no longer possible, since ¢
does not represent the derivative of c. Figure [16] shows a possible evolution of the
values of these variables after introducing the dynamic type.

Moving Filling Moving

Figure 16: Conveyor run after introducing dynamic types.

4.3. Control variables

In CIF, the values of variables change arbitrarily after an action is executed,
unless this is restricted by the update predicate associated to the action or by the
invariants. It is often desirable that the model variables keep their values after
an action is performed, as it is the case in programming languages, or timed and
hybrid formalisms such as Uppaal [2] or Chi [55], respectively.

By declaring a variable as controlled, whenever an action is performed, the
value of that variable will remain constant, unless it belongs to the set of jumping
variables of the action. Furthermore, control variables can only be changed by the
composition that declares them as controlled. In this way, the concept of control
variables corresponds with the same concept in hybrid I/O automata [[1} 150].

To illustrate the effect of the control variable operator, we show in Equation 2]
the model of the conveyor, henceforth denoted as p conveyor

Ctrl{‘/’muw ) VB 7C} (D{C:Gcont VB :Geont ,Vimaz :Gdisc} ( Con(l}eyor)) (2)
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where variables V..., Vg, and c are declared as controlled. As with the dynamic
type operator, we abbreviate the nested application of control variable operators
using set notation. The behavior of variables ¢ and ¢ in this model is shown in
Figure After action (open) is performed, the value of ¢ cannot jump. Note that
after performing action close, the value jumps to 0 because it is explicitly required
by the update predicate of the edge that describes this action.

Mowving Filling Mowving

Figure 17: Conveyor run after introducing control variable operator.

4.4. Parallel composition

To model the parallel execution of systems, CIF provides the parallel composi-
tion operator. When two compositions p and g are put in parallel, they can execute
synchronizing actions simultaneously and interleave asynchronous actions. They
interact by means of shared variables. The passage of time synchronizes in both
automata.

To illustrate parallel composition in CIF, we introduce first the model of a
tank (without declarations), which is shown in Figure [I8] It has a unique initial
location Closed, representing the state in which the valve of the tank is closed (and
therefore the outgoing flow () equals 0). In the Closed state, the volume of the tank
increases at rate (J;,, and its volume cannot exceed V.. When the tank is in the
Opened state, the outgoing flow is set to ()¢, and the liquid enters the tank at rate
Qin — Q. In this state, the volume of the tank (V) cannot exceed the maximum
value allowed either. If V7 reaches 0, then the Empty state is reached, where the
outgoing flow equals the incoming flow, and the system can linger in that state as
long as the liquid volume is 0.

In the previous model, we declare all variables that are associated to differential
equations, as continuous. These variables are V7 and ). We want (), and Q) s¢;
to be constant (both after time delays, and after executing actions), thus we declare
them as discrete and controlled. In addition, it is not desirable that the volume
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Tank

Opened
tep: 0 <V < Vg
inv: Vp= Qin — QN

Q = Qset

act open

Closed
tep: 0 < Vi < Vg
inv : VT = QinN
Q=0

act close

act close Empty
tep @ true

nv: Q=QnA
Vr=0

Figure 18: Tank model without declarations.

of the tank changes arbitrarily when we perform the close action, and we do not
want another component to modify the volume of the tank. Thus, we also declare
Vr as controlled, and using a similar reasoning () is made controlled as well. If
we denote the automaton depicted in Figure (18| as Tank, then the model of the
tank, henceforth referred to as pg,,k, with all the corresponding declarations can
be written as shown in Equation 3]

Ctrl{VT'rnaz :Qinstet 7VT} (D{VT:Gc(m,t7Q:Gcont7an:GdisczQSEt:Gdzsc} ( Tank)) (3)

Figure [19| shows the evolution of the values of variables in a simulation run.
Initially ) can only be 0, whereas Vi can assume any value that is between 0 and
Vimaz- After a certain time delay, in which () remains constant and Vi evolves
according to Vi = Qin, action open is executed. Observe that the value of Vp
is not changed after this action is performed (it is a control variable), whereas ()
has to jump in order to satisfy equation () = Qs:. In the second time delay,
where the system is in the Opened state, the volume of the tank starts decreasing
(we assume @, < @) and ) has the same value as (),.; during the entire delay.
When the volume of liquid in the tank reaches 0, further delays are not possible,
since that would violate the tcp predicate, thus action 7 has to be executed and the
Empty state is entered. In this state, the tank remains empty (V; = 0), and the
outgoing flow decreases to the value of @Q);, (we assume Q;, < (se). Finally,
action close is executed and the evolution of the variables in the last time delay
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shown in Figure [I9]is as described before.

A ,
Closed Opened Empty  Closed
) S —
Vo | |
‘ | | Vr
! Q=Qset !
/\\ P Q=Qin
| Vr
Q = 0 | | V | Q — 0 T
open T close

Figure 19: Run of the tank.

Next, we have to build the bottle filling line model. Thereto, we must put the
models of Figures @ and @ (P Conveyor and prynk respectively) in parallel. However,
this is not enough since actions are not synchronizing by default. Nevertheless,
for illustration purposes, we show in Figure 20 a run of the system when these
two models are put in parallel. We have depicted only variables relevant for our
example. The uppermost braces show the states in which the conveyor model is at
a given time, whereas the braces below these show the states of the tank. Initially
the conveyor is moving and the tank is in the closed state. In the first time delay the
values of variables V7 and ) evolve as described previously, whereas the values of
variable Vg change arbitrarily in the first two time delays, and they are not shown
in the plot. The first action that is executed is the open action in the tank, which
does not synchronize with the action of the same name in the conveyor, which is
executed later in time. When the conveyor performs its first action, variables Vp
and @ are not affected, and the volume of liquid in the bottle (V) starts increasing
at rate () = (se:. When the tank is emptied (V7 reaches 0), the tank performs a
7 action, and in Figure [20]it is possible to see how this does affect the behavior of
the conveyor model, since now the volume of liquid in the bottle increases but at
a rate equal to QQ;,. After a new delay, Vg = V4, (temember V., represents
the maximum volume of the bottle). As a consequence no further time delays are
allowed in the model, since in a parallel composition, time must be able to pass for
all the components. Thus, action close executes in the conveyor. After a certain
delay, the action close of the tank is performed, and the system starts behaving as
described before.

The next section presents a model in which the actions close and open of the
conveyor and the tank synchronize, yielding the desired synchronizing behavior
for the bottle filling line model.
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Moving Filling Moving

A Tose Opened Empty  Closed
~ i )

T [l T |
Vinas = Vb
Ve |l o
g o Vr
/‘\‘\ Q=qQu
o Vo oo
Q:O | | \VT | Q:O
open T close N

open close

Figure 20: Run of conveyor and tank without explicit synchronization.

4.5. Synchronization operator

As we saw in the previous section, in CIF actions do not synchronize by default.
This gives the modeller more flexibility as pointed out in [38]], and it allows us to
implement different communication patterns, as illustrated in Section[8.1} Given a
composition p, and an action a, if we want a to be executed synchronously when p
is composed in parallel, we declare action a as synchronizing.

A composition v, (p) declares action a to be synchronizing in p. When ~,(p)
is put in parallel with a composition ¢, which also declares a as synchronizing,
action a has to be executed by v,(p) and ¢ at the same time. Executions of a by
only one of these components are not possible. When ~,(p) is put in parallel with a
composition 7, which does not declare a as synchronizing, only 7, (p) can execute
a (independently of r).

As an example, consider the model of the conveyor depicted in Figure [2]
which we denote as pconveyor; and consider the model of the tank shown in Fig-
ure (3| denoted as pru,;. The behavior of composition Yejose (Yopen (PTank)) ||
Yelose (Yopen (P Conveyor)) is illustrated in Figure Here it is possible to see that
actions open and close must occur at the same time. Action open cannot be exe-
cuted earlier than A, because of the guard A < ¢ in the edge of the conveyor. After
this time, both models can execute this action synchronously. When the conveyor
enters the state Filling, the volume of the liquid in the bottle starts rising, until it
reaches V42, at which point time cannot progress any further, and action close
has to be executed in the tank and in the conveyor at the same time.

Note that composition ciose (Yopen (P Tank || PConveyor)) does not give the de-
sired behavior. If the models of tank and conveyor are composed in this way,
actions open and close can be executed asynchronously. Section [5] provides the
formal details.
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Moving Filling Moving
A Closed Opened Closed

Vmaz

Figure 21: Run of conveyor and tank with explicit synchronization.

4.6. Urgency operator

In CIF models, actions are not urgent by default. This means that the execution
of an action can be delayed as long as the equations in the model allow it. To
change such behavior, urgency can be introduced by means of two concepts: time
can progress predicates and invariants, and the urgency operator. As we have seen
before, time can pass in an active location as long as its invariant and tcp predicates
are satisfied. If these cannot be satisfied by any time delay, only actions can be
executed, or the whole system deadlocks. In the conveyor model of Figure 2] when
the liquid in the bottle reaches its maximum allowed volume (V43 ), time cannot
progress, which makes action close urgent.

Informally, an action is urgent if whenever it is enabled, time cannot progres
For an automaton, urgency can be expressed by using tcp predicates. However,
when parallel composition is involved, the definition of enabled actions becomes
more complex, and urgency can no longer be defined through tcp predicates in a
compositional way (see [38]] and the example of Figure ). For this purpose, CIF
has the urgency operator. Given a composition p and an action a, composition
V4 (p) expresses that no time delay is possible if action a is enabled in p.

The issue of defining urgency in a compositional way has been addressed
in [56]. The authors define the semantics of timed systems in terms of timed tran-
sition systems. The definition of urgency for parallel composition is handled in
syntactic way, by means of a composition operator. On the other hand, we define
the semantics of urgency at the semantic level, using operations on the labels of the
hybrid transitions (see Section [3).

As an example, suppose we want to make action open urgent in the conveyor

3Note that an urgent action in CIF does not have priority over other urgent actions.
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model. This can be achieved with the aid of the urgency operator as shown in
Equation 4]

Vopen ('YClose ('Yopen (p Tank )) || Vclose ('Yopen (p Conveyor ) )) “4)

In this model, if action open is enabled in both components (action open is syn-
chronizing), then time cannot longer pass and an action has to be executed (al-
though not necessarily open). In the model under consideration, the execution of
action open occurs at time A, since it is the earliest time at which this action is
enabled.

Note that if we would have used two urgency operators to enclose each compo-
nent of the bottle filling line separately, as shown in Equation [5] the model would
have deadlocked, since action open is enabled at time O in the tank, and therefore
time cannot pass. But this action is disabled in the conveyor, and since it must be
executed synchronously no action can be executed either.

Vopen (7close ('Yopen (p Tank ) ) ) | | Vopen ('YClose (70pen (p Conveyor ) ) ) (5)

4.7. Other operators

In this section we explain the informal semantics of the remaining CIF oper-
ators. Their semantics was introduced in previous works [S5, [51]], and therefore
they do not require a separate section for each one of them. Section [5|provides the
formal semantics of these operators.

The initialization operator allows to define the initial conditions of models in a
compositional way. Given a composition p and a predicate u, composition u > p
can start executing in initial valuations that satisfy u. For instance, we could have
set the initial volume of the tank in the following way:

(VT = 10) > ("Yclose (’}’open (p Tank )) ” Yeclose (Vopen (p Com/eyor)))-

Actions and variables can be made local by means of the scoping operators.
Given a composition p and an action a, composition [ a :: p ]| declares action
a as local, which means that a is not visible outside this composition, and as a
consequence it cannot be synchronized with other actions in a parallel context.
Similarly, given a composition p, expressions ey and e;, and a variable x, compo-
sition [[y = eg,& = e1 :: p || declares variables = and & as local, which means
that the local values of these variables are not visible outside this scope. Expres-
sions eg and e; define the initial values of the local variables. These expressions
can be |, which indicates that the variables are uninitialized and therefore they can
have any value in their domain.
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5. Formal semantics

In this section, we present the structured operational semantics (SOS) of CIF.
Formal semantics has several advantages since it gives a precise meaning to CIF
models, it provides a reference against which implementations can be judged, and
it enables the formal definition and proof of semantics-preserving model transfor-
mations.

Instead of taking the traditional approach for defining the semantics of hybrid
automata [48]], we have chosen the SOS approach since it is better suited for guid-
ing the implementation process [57]], and it allows us to use standard formats for
proving congruence [8].

The formal semantics described here associates, by means of inference rules,
a hybrid transition system with every CIF composition. The following sections
present the inference rules for constructing the three kinds of transition relations
for a given composition. The SOS rules are presented in the same order as the
operators are introduced in the abstract grammar of Table ]

5.1. Automata

Rule [T models the state change caused by the execution of an action, which
can be triggered in a state with valuation o, only when there is a location v, and
an edge of the form (v, g, a, (W, r),v’), such that the initialization predicate of v
(init(v)), the guard g, and the invariant of v (inv(v)) are satisfied in o; and it is
possible to find a new valuation o’ such that the variables in the set (X Uvarg)\ W
do not change in ¢’, the update predicate r is satisﬁe(ﬂ in 0’* Uo, and the invariant
of the new location is satisfied in ¢’. In Rule [1] id, denotes the function that
returns true only if the location equals v. More specifically, id, € V' — B, and
id,(w) £ v = w, where = denotes syntactic equivalence.

(v,g,a, (W,r),v") € E,o = init(v),o = g,0 = inv(v), o’ = inv(v'),

1+ /
o Uo E 1,0 [(xvare \W= 0" [ (XUvare)\W
) a,a€actg, X
R

((V,init, inv, tcp, E, varc, actg, dtype), o
((V,id,, inv, tep, E, varo, actg, dtype), o’)

The previous rule shows how the initial predicate function is used as a program
counter, which keeps track of the actions that are executed. Note that a unique
active location is chosen after performing action a. As we will see later on, the
same happens when performing a time delay, or an environment transition. In

*Remember that o’T = {(z*,v) | (z,v) € ¢’} as defined in Section
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an action transition we do not want control variables to jump arbitrarily. Control
variables can be declared in the automaton (varc), or in the control variable oper-
ator, in which case these declared variables will be included in the set X. This is
why we demand condition o [(xuvare)\w= o’ [(xXUvaro)\w to hold. Condition

o' Uo = ris needed (instead of o/ |= ) because 7 may refer to the values of
the variables before the action, which are in o; and also to the new values of the
variables, which are in o’

Rule 2l models the passage of time for an automaton. Time can pass for ¢ time
units if the invariant associated with the active locations is satisfied in each point
in [0, ¢], the time can progress predicate is satisfied in [0, ¢), and the dynamic type
constraints specified by dtype are satisfied. Note that according to this rule, a time
transition can select in which of the possible initial states the automaton begins its

execution. This corresponds to the theory of hybrid automata (e.g. see [48]]).

dom(p) = [0, t],0 < t,dom(p) = dom(#), p(0) |= init(v),
(Vs:sedom(h):0(s) ={a|(v,g,a,u,v") € ENp(s) E g}),
(Vs:s€0,t]: p(s) Einv(v)), (Vs:s € [0,t) : p(s) = tep(v)),
(Vo : x € dom(dtype) : (pz, pz) € dtype(z))

((V,init, inv, tcp, E, varc, actg, dtype), p(0)) p,acts,0
((V,idy, inv, tcp, E, varc, actg, dtype), p(t))

Finally, Rule[3]states that an automaton can perform an environment transition
in an initial valuation o, if there is an active location v such that o is consistent
with the invariant of v, and it can end in any valuation o’ that satisfies the same
invariant, and where the variables controlled by the automaton remain unchanged.

o = init(v), o = inv(v), o’ = inv(v), 0 [vare= 0" [vare
actg

((V,init, inv, tcp, E, varc, actg, dtype), o) --»
((V,idy, inv, tep, E, varc, actg, dtype), o)

3

5.2. Parallel composition

Rule [ states that two synchronizing actions with the same label can execute in
parallel only if they share the same initial and final valuation, and if the action is
synchronizing in both compositions. The set of control variables X, is propagated
from the conclusions to the premises since the control variables in the scope of a
parallel composition are shared by both partners. The resulting action transition
is also synchronizing, which allows action a to synchronize with more than two
compositions.
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,t X b X
(p,o) 255 (¢, 0'), (g, 0) 255 (¢, o)

a,true, X
) — (

4
(g0 P ld,o)

Rules[5|and[6] model interleaving behavior of two compositions when executed
in parallel. In these rules, an action can be performed in one of the components
only if the initial and final valuations are consistent with the other composition,
and if this action is not synchronizing in the other component, which is expressed

by condition a ¢ A. In Rule the environment transition (g, o) N (¢,0") is
used to obtain the set of synchronizing action labels in composition ¢, to ensure
that the initial valuation o is consistent with the active invariants and initialization
conditions of g, to select an initial location (in case there is more than one in ¢), and
to remove any initialization operators from qﬂ Note that ¢/, and not ¢, is placed
in the final state in the conclusion; this avoids occurrences of the initialization
operator in the resulting term and stores changes in local variables (if any).

(0, 0) 225 (o), (q.0) 25 (¢',0"), a ¢ A

9
b, X
(llg0) == @ | ¢
(Q7U) a7b—’X> (qlaa,)u (p,O') _é_) (p,70/)7 a ¢ A 6

7b’X
wllago) == d0)

Rule [/ models the fact that if two compositions are put in parallel, time can
pass only if allowed by both partners. As can be seen in this rule, the set of enabled
actions in the parallel composition at any point in time during the delay depends
both on the set of enabled actions and the set of synchronizing actions in each
component individually. In the expression (6, N 6,) U (6, \ Ag) U (64 \ 4,) in
the conclusion, the constants A, and A,, and the operators M and \ must be lifted
accordingly to match the types. We avoid doing so here to keep the notation simple.

VAL ,0 JAg,0
(p,0) "7 (0, o), (q,0) " (¢, o)

p,ApUAq,(HPQHqu\Aq)U(Gq\Ap) (

(vl q,0) pld, o)

The construction of the guard trajectory in the conclusion deserves some ex-
planation. According to the description of the time transition given in Section [3]

SRemoving initialization operators is important because we want them to influence only the initial
behavior of the system.
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the guard trajectory in the conclusion should model the set of enabled actions at a
given time in the parallel composition p || ¢g. Let A; be the set of synchronizing
actions of composition 4, i € {p, ¢}, and 6;(s) the set of enabled actions of 7 at
time s, then an action a is enabled at time s in p || ¢ if at least one of the following
conditions holds:

1. Action a is enabled in both components, which can be expressed as a €
,(s) N 64(s). A simple case analysis will convince the reader that when
an action is enabled in both components, then it is enabled in the parallel
composition of these, irrespective of whether a is synchronizing.

2. Action @ is enabled in p, and is not synchronizing in ¢, which can be ex-
pressed as a € 6,(s) \ Ag.

3. Symmetrically, a € 04(s) \ Ap.

Rule [§] defines the environment transition behavior for parallel composition.
The resulting set of synchronizing actions is the union of the synchronizing actions
of p and ¢, and the end valuation of all transitions must match.

Ap Aq
(p,a) - (plvgl)v (CL U) -2 (qlaal)

A,UA, 8

(rllgo) —— @4 0)

5.3. Control variable operator

In Rule 0] variable x is added to the set of control variables of the transition in
the premise. In this way, « can only be changed by an automaton if this change is
explicitly specified (see Rule I)).

(p’ O') a,b,XU{x} (p’,a’)

9
(ctrly(p), o) LA (ctrlz(p), 0")

The operator has no effect in time transitions, as expressed by Rule[10} Rule
allows an environment transition only if the control variable is not changed in the
premise. Thus, when used in interleaving parallel composition, this will ensure that
the value of a control variable will not be changed by a parallel process outside the
scope of the operator.

0.0 o) o) B o) 0@ =)
(ctrl(p), o) ’nﬂ (ctrl,(p'),0’) (ctrly(p), o) A, (ctrly(p), o)
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5.4. Urgency operator

Rule|12]specifies that the urgency operator restricts the time behavior of a com-
position in such a way that time can pass for as long as no urgent action is enabled.
A

dom(p) = [0,4], (p, o) 224 (o, 0”), (s :5 € [0,1)  a & 6(s))

(Wap), o) 225 (va (), o)

>

12

The urgency operator affects only the time transition rules. Action and envi-
ronment transitions remain unchanged as expressed in Rules [I3] and [I4] (although
action behavior can be influenced by the urgency operator, since it can prevent

certain guarded actions from taking place if urgent actions are enabled).
a/7b7X / / A / /
) EE— ) yO) == y O
(p,0) _ (p',0") 13 P0) == (o) 1
a "y

Wa():0) “25 W), o)) Walp)0) -2 (Wa ), o)

5.5. Dynamic type operator

Rule [15] specifies that, for time transitions, the dynamic type operator ensures
that the trajectories for the variable x and the dotted version of the variable & are
restricted to the behavior that is specified by the set of pairs of solution functions

G.
(pa U) M (p/,()'/), (Px,Pz) €G

(DI:G(p)a O') w (Dx:G(p/)v 0/)

15

The dynamic type operator has no effect on action or environment transitions

as expressed by Rules[16]and
a,b,X ;. A ;.
) ) ) T )
(p,0) — (¢, ") 16 (p,o) — (¢, ') 17

(Dec(),0) 225 Dea(@),0’)  (Drc(p), o) -2 (Dra (), o)

5.6. Initialization operator

Rules [I8] [T9] and [20] formalize the fact that the initialization operator allows
transitions only for those initial valuations that satisfy the initialization predicate.

A b, X
(p7 U) -2 (p/,O',),O' ): U 18 (p, 0') a—) (p,,O'/),O' }: u 19
A
(u>p,o)--»(p, o) (u>>p,a)ﬂ>(p’,a’)

(p,0) 2 ¢/, 0"), 0 = u

A0
(u>p,o) =5 (0, 0")

20
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5.7. Synchronization operator

The term v, (p) defines the basic action label a as synchronizing. Synchro-
nization occurs only in the context of parallel composition, thus the composition
~a(p) must be placed in parallel with another component to observe the effect of
the synchronization operator.

The above is formalized in the SOS rules by altering the edges of the transi-
tions, as shown in Rules [21] 22] and[23] More specifically, for time behavior (Rule
[21)), the synchronization operator only changes the set of synchronizing actions in
the labels of time transitions. For action transitions (Rule 22)) the action a is made
synchronizing if the action label coincides with a, and for environment transitions
(Rule[23) @ is added to the set of synchronizing actions given by the premise.

(p, o) 225 (1, 0")

(Ya(p), o) "2 (), o)

(p,0) 225 (o) . <p,a>Ai:}<p',a'> ”
(a(P),0")  (ha(p),0) =" (7a(p'), o)

21

a’,bva'=a,X
(Ya(p), 0) ——
5.8. Variable scope operator

The variable scope operator (also called variable hiding) introduces a local
variable and its dotted version in a composition. These variables are invisible out-
side of the scope, and, conversely, global variables with the same name cannot be
modified inside the scope.

Rule [24]is similar to the variable scope rule presented in [51]. In its premise,
the variable being declared is removed from the set of control variables, because
if z € X then x refers to a global variable. Predicate (o = (¢; = d;)) Ve, = L
models the fact that the value of expression e in the valuation o is d;, unless e; = L,

in which case d; can be any value. Condition z € X = o(x) = ¢'(x) in rule

. . . .. b,X .
is used since in an action transition (p, o) RN (p',0’), it must be the case that

o [x\w)= o’ [(x\w)> Where W is the set of all the variables that are changed by
action a; and since all ocurrences of variable x in the set of jumping variables in the
automaton refers to the local variable, the global variable x cannot be a jumping
variable of the action a. Therefore, if it is a control variable then it cannot change
its value.

(cE(eo=dy))Vey=L,(c =E(e1=di))Ver=1,2€ X = o(x) =0 ()
a,b,X\{z}

(p.{z > do, & di} = o) (' {z = dy, &= di} - o)

a,b, X

vz =eo,&=erzpllo) == ([ve=dy<=d :p'], o)
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Rule 25]is s