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Abstract

Different modeling formalisms for timed and hybrid systems exist, each of which
addresses a specific set of problems, and has its own set of features. These for-
malisms and tools can be used in each stage of the embedded systems development,
to verify and validate various requirements.

The Compositional Interchange Format (CIF), is a formalism based on hybrid
automata, which are composed using process algebraic operators. CIF aims to
establish interoperability among a wide range of formalisms and tools by means of
model transformations and co-simulation, which avoids the need for implementing
many bilateral translators.

This work presents the syntax and formal semantics of CIF. The semantics is
shown to be compositional, and proven to preserve certain algebraic properties,
which express our intuition about the behavior of the language operators. In ad-
dition we show how CIF operators can be combined to implement widely used
constructs present in other timed and hybrid formalisms, and we illustrate the ap-
plicability of the formalism by developing several examples.

Based on the formal specification of CIF, an Eclipse based simulation environ-
ment has been developed. We expect this work to serve as the basis for the formal
definition of semantic preserving transformations between various languages for
the specification of timed and hybrid systems.
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Figure 1: Multiple model transformations without an interchange format.

1. Introduction

1.1. Background

Controller software has become an artifact that is present in a wide range of em-
bedded systems. Embedded software programs must interact with physical com-
ponents, and contain a high degree of parallelism. In addition, they must meet
critical safety, liveness, and performance requirements. All this makes the design
of embedded software a difficult task, which calls for a model based approach that
enables validation and verification via modeling.

Embedded systems combine the discrete essence of the software, and con-
tinuous aspects of the physical environment. Therefore, timed and hybrid for-
malisms [1, 2, 3], which are designed to combine computational, timed, and phys-
ical aspects of a system in one formal model, arise as the natural candidates for
specification, verification, and validation of embedded system software.

But there is no panacea: different modeling formalisms for timed and hybrid
systems exist. Each of these formalisms addresses a specific set of problems, and
has its own set of features. Moreover, several formalisms and tools can be used in
each stage of the embedded systems development, to verify and validate various
requirements. This led to the need for integrated tool support for the design of
large complex controlled systems, from the first concept to the implementation,
and further on, over their entire life cycle.

The Compositional Interchange Format (CIF), is a formalism based on hybrid
automata, which are composed using process algebraic operators. CIF aims to
establish interoperability among a wide range of formalisms (and tools) by means
of model transformations to and from CIF. In this way, the implementation of
many bi-lateral translators between specific formalisms can be avoided, as shown
in Figs. 1 and 2.

CIF, being an interchange format, has a number of distinctive features [4, 5]:
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Figure 2: Multiple model transformations using an interchange format.

• It has a formal and compositional semantics, and thus it allows definition
and proofs of property-preserving model transformations.

• It has concepts based on mathematics, which are independent of implemen-
tation aspects such as numerical equation sorting algorithms.

• It supports arbitrary differential algebraic equations.

• It incorporates concepts from hybrid automata theory and process algebra,
such as parallel composition, different kinds of urgency and synchronization
by means of shared variables and shared actions.

• It supports modularity, allowing to declare actions and variables local to a
module.

• It supports large scale systems modeling by means of parameterized process
definition and instantiation (reuse, hierarchy). Recently, CIF was extended
with superstates [6]. Such an extension is not considered in this work.

All concepts in CIF have a formal and compositional semantics. As stated in
Section 5, a formal semantics has several advantages: it gives a precise meaning
to CIF specifications, it facilitates the precise specification of models, it provides a
reference against which implementations can be judged, and it enables the formal
definition and proof of semantics-preserving model transformations. In addition,
theoretical results are only possible if they rely on a formal semantics.

The semantics of CIF is defined via structured operational semantics (SOS) [7]
rules. The reason for using operational semantics in an automaton-based frame-
work is that model transformations to and from CIF are not only executed on “com-
plete” models, but also on components of bigger models. Thus, it is crucial that
the CIF semantics is compositional, which we ensure by requiring bisimulation
(equivalence) to be a congruence for all the CIF constructs. This is guaranteed
using the process-tyft format of [8].
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1.2. Related work

Related work on interchange formats for hybrid systems is the following:

• A Hybrid System Interchange Format (HSIF) [9], in the MoBIES project.

• An abstract semantics of an interchange format based on the Metropolis meta
model [10], as a continuation of the COLUMBUS project [11].

• An interchange format for switched linear systems [12] in the form of piece-
wise affine system (PWAs), in the HYCON NoE [13] project.

An overview of these formalisms is given in [14]. Next we present a summary of
this overview.

In HSIF, a network of hybrid automata is used for model representation. The
network behaves as a parallel composition of its automata, without hierarchy or
modules. Variables can be shared or local, and the communication mechanism is
based on broadcasting of boolean signals, where signals are partitioned in input and
output signals. Each signal is required to be either a global input to the network
or to be modified by exactly one automaton. The semantics is defined only for
“acyclic dependency graphs” with respect to the use of signals. The interchange
automaton format defined in this article aims to be more general than HSIF, and
does not incorporate tool limitations, such as restrictions on circular dependencies,
or restrictions on shared variables and algebraic loops, in its compositional formal
semantics.

The abstract semantics presented in [10], takes implementation considerations
into account, such as equation sorting, iterations that may be required for state-
event detection, and iterations for reaching a fixed-point in case of algebraic loops.
The semantics of CIF, defined in Section 5, defines mathematically the semantics
of hybrid automata, in a compositional way, independently of tool limitations and
implementation aspects, such as equation sorting or event detection.

In the HYCON NoE [13] an interchange format for switched linear systems
was defined [12]. This interchange format is based on piecewise affine (PWA)
systems. Several tools, based on among others PWA, HYSDEL, MLD (see [15]
for an overview relating these languages) have been connected to this interchange
format. CIF is a much more general interchange format. The relation between
PWA systems and (linear) hybrid automata is defined in [16].

1.3. Overview of work on CIF

Figure 3 gives a concise overview of past and present work on CIF in several
European and national (Dutch) projects, in particular the HYCON and HYCON2
networks of excellence [13, 17], the ITEA2 Twins project [18], the national Darwin
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Figure 3: Overview of work on CIF.

project [19], and the FP7 C4C and Multiform projects [20, 21]. The following
languages and tools from Figure 3 are currently connected to CIF:

1. Modelica and gPROMS: For IPDAE (Integral and Partial Differential Alge-
braic Equations) modeling and simulation, translations between CIF and the
advanced modeling languages Modelica and gPROMS are available [22, 23].
This significantly increases the applicability of CIF in industrial practice.

2. MUSCOD-II: A connection of continuous CIF models to the dynamic sim-
ulation environment MUSCOD-II has been developed. This allows to inter-
face to optimization-based synthesis tools [24].

3. Uppaal: A semantic preserving transformation from CIF to Uppaal has been
defined in [25]. The implementation is described in [26]. The CIF-to-Uppaal
transformation has been used, for example, to verify liveness properties of
a synthesized supervisory controller of a patient support system of an MRI
scanner as described under item 7.

4. SpaceEx: A transformation between CIF and SpaceEx was developed for
model checking of hybrid CIF models [27].

5. Matlab/Simulink: A Matlab toolbox and a Simulink integration component
were developed that allows to simulate CIF models directly from the Matlab
command line, and in principle also from within Simulink models [28]. The
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Figure 4: Supervisory controller synthesis via CIF with verification in Uppaal.

latter requires an additional S-function [29] interface.
6. Sequential Function Charts: A transformation of SFCs to CIF is defined in

[30]. Sequential Function Charts is one of the languages defined in the IEC
61131-3 standard [31] for logic controller design.

7. Supervisory control synthesis tools: several transformations have been de-
fined to allow different supervisory control synthesis tools to share the same
CIF input specifications for plant models and (event-based) control require-
ment, and to share the same CIF output for the synthesized supervisory con-
trollers. The generated CIF supervisory controllers can be used, among oth-
ers, for simulation-based testing and for real-time control [32, 33, 34]. The
CIF-based supervisory controller synthesis tool chain was tested by means
of simulation and real-time control on an actual patient support system of an
MRI scanner [35]. Figure 4 shows the automatic toolchain that has been used
for controller synthesis. Supervisory control synthesis guarantees safety and
nonblockingness by restricting behavior. By means of subsequent Uppaal
verification, liveness properties can be checked. Note that the supervisory
control requirements can also be defined by means of the visual Hierarchical
Cause/Effect Charts editor, as described in [36].

Connection of the other tools from Figure 3 is still work in progress. Some of
the connections of CIF to other tools shown in the figure, such as the connection to
EtherCAT for real-time control [37], are still based on the old version of CIF, CIF1
[14]. New developments are based on CIF2 [38, 39, 40]

The transformation framework used for model transformations to and from CIF
is based on OMG [41] standards: Class diagrams, in the form of Ecore metamo-
dels, are used for the conceptual definition of CIF; QVTo is used as the model to
model transformation language; and Acceleo is used as the model to text (code)
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transformation language [42, 43].
The use of a transformation language, such as QVTo, has as advantages that

transformations are specified at the problem domain instead of coded at the imple-
mentation level, that implementation efforts are reduced and transformations are
more robust for changes. For defining chains of transformations, the ToolDef [42]
language has been defined. A syntax aware ToolDef editor has been generated
by means of EMFText [43]. The editor provides among others integrated parsing,
static semantic checking, syntax and occurrence highlighting, and code folding,
see the examples in Figures 5 and 6.

Figure 5: ToolDef tool chaining example.

Figure 6: ToolDef tool specification example.

Beside being used for model transformations, CIF can also be used as a stand-
alone modeling and simulation formalism for timed and hybrid systems. An
Eclipse-based [44] tool set has been developed that provides a user-friendly envi-
ronment for simulation, analysis, design, and for the definition of model transfor-
mations [45]. The CIF simulator was developed on the basis of the SOS (structured
operational semantics) specification of the language [46]. To support hierarchical
model development via stepwise refinement, CIF was recently extended with and-
or superstates, leading to hierarchical CIF (HCIF) [6]. Simulation of HCIF models
is possible via a HCIF to CIF transformation, which eliminates the and-or super-
states by flattening the model. CIF models can be expressed using a textual notation
(Figure 7), or a graphical notation (Figure 8). Simulation runs can be visualized
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Figure 7: CIF textual editor

using a Scalable Vector Graphics visualizer (SVG) [47] as shown in Figure 9. Most
of the CIF tools are open source, and available via [40].

Figure 8: CIF visual editor

1.4. Objective

The goal of this paper is to present the core concepts of CIF, and their specifi-
cation by means of a formal semantics. In doing so, novel operators are introduced,
such as synchronization and control. The semantics is validated by showing that it
is compositional, and that it preserves certain algebraic properties, which express
our intuition about the behavior of the language operators. In addition we show
how CIF operators can be combined to implement widely used constructs present
in other timed and hybrid formalisms.
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Figure 9: CIF SVG visualizer.

The structure of the paper is as follows. Section 2 presents the CIF syntax, both
informally and formally. To be able to explain CIF semantics, and to get a better
insight of the concepts involved, Section 3 develops the semantic framework. In
Section 4 the language is explained informally, and the formal semantics is given in
Section 5. The semantics is validated in Section 7. In Section 8, CIF is illustrated
by means of several examples. Concluding remarks are presented in Section 9.

2. Syntax of CIF

This section presents the syntax of CIF. The basic building blocks of CIF are
automata. They resemble the hybrid automata as presented in [48], which model
computational and physical behavior of a system by mixing automata theory with
the theory of differential algebraic equations.

Informally, a basic CIF automaton is shown in Figure 10, which models a con-
veyor belt carrying bottles to be filled. Graphically, the name of the automaton
(Conveyor ) is specified in a box, placed above the top-left corner of the rectangle
that encloses the drawing of the automaton. The volume of the bottle (VB) cannot
exceed the maximum allowed volume (Vmax ). The rate at which liquid enters the
bottle is represented by variable Q. A clock c is used to ensure that ∆ time units
will elapse between the filling of two bottles, where ∆ is some positive constant.
The automaton consists of two locations, Moving and Filling , which are depicted
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Moving
tcp : c ≤ 2 ∗∆
inv : ċ = 1

Filling
tcp : true
inv : VB ≤ Vmax ∧

V̇B = Q

c = 0

when ∆ ≤ c act open do ({VB}, VB+ = 0)

when true act close do ({c}, c+ = 0)

Conveyor

Figure 10: Model of a conveyor (without operators).

as circles. Locations represent the computational states of a system. Every location
contains a predicate called invariant, which must hold as long as the system is in
that state; and a time can progress (tcp) predicate, which must hold during time
delays. In the example of Figure 10, location Moving has the predicate ċ = 1 as
invariant, and the predicate c ≤ 2 ∗ ∆ as tcp. Location Filling has the invariant
VB ≤ Vmax ∧ V̇B = Q, and the tcp predicate true. Invariants can be used, for
instance, to specify differential algebraic equations. In this way, it is possible to
model the physical behavior of a system in a particular computational state. Local
urgency conditions can be defined using tcp predicates.

Edges represent discrete changes in the computational state of a system. An
edge has a source and a target location, and its execution results in a change of
location (unless the edge is a self loop). The automaton of Figure 10 has two
edges, which are depicted as arrows (the arrows point to the target location). Every
edge contains a predicate called guard (∆ ≤ c and true, respectively, in Figure 10)
that determines under which conditions a transition can be executed, a predicate
called update (V +

B = 0 and c+ = 0, respectively, where x+ denotes the value of
variable x in the next state) that determines how the model variables change after
performing the action, and a set of jumping variables ({VB} and {c}) that specify
the variables that are changed by the action. Edges are labeled by actions (open
and close in Figure 10) that may be used to synchronize the behavior of automata
in a parallel composition. Finally, every location has an initialization predicate
associated to it, which describes constraints that the initial values of variables must
satisfy if execution is to start in that location. Note that this predicate can be used
to specify the initial locations of an automaton. In Figure 10, location Moving
has c = 0 as its initial condition (depicted as an small incoming arrow without
source location), and location Filling has the predicate false as initial condition
(depicted by the absence of such an incoming arrow), which means that execution
cannot begin in that computational state. Section 4.1 explains the semantics of CIF
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automata in detail.
Following CIF concrete syntax, an arrow from location v to v′ labeled

when g act a do (W, v), represents the edge (v, g, a, (W, r), v′). If the guard dec-
laration is omitted (when g part) then it is assumed to be true. If the action is
omitted (act a part), it is assumed to be the silent action τ . If the update is omitted
( do (W, r)) part, then it is assumed to be (∅, true).

Additional components of an automaton (not shown in the example presented
here) include: a set of control variables, a set of synchronizing actions, and a dy-
namic type mapping. Intuitively, control variables are those variables that can only
be modified by the automaton that declares them, and they do not change arbitrar-
ily after performing an action. The set of synchronizing actions is used to specify
which actions are to be synchronized when the automaton is composed in parallel.
The concept of dynamic types is used to model constraints in the joint evolution of
a variable and its dotted version. In CIF a dynamic type is a set containing pairs
of functions, whose domain is a closed range of the form [0, t], with t ∈ T (see
Definition 4). Notation T is used to refer to the set of all time points. Examples
of dynamic types used in this work include discrete, continuous, and clock. In-
formally, if a variable x is of type discrete, then its value must remain constant in
time delays, and ẋ is always zero. On the other hand, the value of a continuous
variable changes as a continuous function of time, and its dotted version represents
its derivative. If a variable c is of type clock, then during time delays its value
evolves (as a function of time) at rate 1. Section 4.2 provides more details. The
syntax of these components is given in Definition 5, and their associated concepts
are explained in Section 4.

Formally, the locations of CIF automata are taken from the set L. Actions be-
long to the set A. We use the symbol τ (τ /∈ A) to refer to the silent action, and
we define Aτ , A ∪ {τ}. We distinguish the following types of variables: reg-
ular variables, denoted by the set V; the dotted versions of those variables, which
belong to the set V̇ , {ẋ | x ∈ V}; and step variables, which belong to the set
{x+ | x ∈ V ∪ V̇}. Variables are constrained by equations and we implement them
as predicates. The values of the variables belong to the set Λ that contains the sets
of booleans B, and reals R, among others. Guards are taken from the set Pg; ini-
tialization predicates, invariants, and tcp predicates are taken from the sets Pt; and
update predicates are taken from the set Pr. Expressions are taken from the set E .

To formally characterize the set of all dynamic types, we need to define some
operators on trajectories [49]. In the context of the current work, a trajectory is a
function that maps time points onto valuations, and a valuation is a function that
maps variables onto values. Given a trajectory ρwith domain [0, t], and a time point
s, s ≤ t, the prefix operator returns a trajectory that equals ρ up to s. Similarly,
given a time point s, the postfix operator allows to construct a valuation that equals
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ρ in the time interval [s, t]. The formal definition of these operators is given below,
where given a function f , and a set A, f �A is the restriction of f to A.

Definition 1 (Trajectory prefix operator). Given a time point s ∈ T, and a tra-
jectory ρ : [0, t] → A, such that s ≤ t, function ρ≤s is defined by means of the
following equality:

ρ≤s , ρ �[0,s]

Definition 2 (Trajectory postfix operator). Given a time point s ∈ T, and a trajec-
tory ρ : [0, t] → A, such that 0 ≤ s ≤ t, function ρ≥s : [0, t − s] → A is defined
by means of the following equality:

ρ≥s(r) , ρ(r + s)

for all r ∈ [0, t− s].

For the automaton postfix operator note that ρ≥s(0) = ρ(s) and ρ≥s(t− s) =
ρ(t).

Finally, the concatenation operator allows to form a new trajectory by gluing
two trajectories together.

Definition 3 (Concatenation operator). Given two trajectories ρ : [0, t] → A and
ρ′ : [0, t′]→ A, such that ρ(t) = ρ′(0), function ρ ·t ρ′ : [0, t+ t′]→ A is defined
as follows:

(ρ ·t ρ′)(s) ,

{
ρ(s) if s ≤ t
ρ′(s− t) if t < s

Using these definition we can now formally define the set of all dynamic types,
where we use A ⇀ B to denote the set of partial functions from A to B, and
dom(f) is the domain of function f .

Definition 4 (Dynamic Types). The set D ⊆ 2(T⇀Λ)×(T⇀Λ) of dynamic types is
the least set that satisfies for all G ∈ D:

1. for all (f, g) ∈ G such that dom(f) = [0, t], and for all s ≤ t, (f≤s, g≤s) ∈
G.

2. for all (f, g) ∈ G such that dom(f) = [0, t], and for all 0 ≤ s ≤ t,
(f≥s, g≥s) ∈ G.

3. for all (f, g) ∈ G and (f ′, g′) ∈ G such that dom(f) = [0, t], dom(g) =
[0, s], f(t) = f ′(0) and g(s) = g′(0), we have (f ·t f ′, g ·s g′) ∈ G.
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Such a definition of dynamic types is required to prove the properties of prefix
and postfix closure, and the property of state. Analogous restrictions are required
in the setting of hybrid I/O automata [50].

The exact syntax and semantics of predicates and expressions are left as a pa-
rameter of our theory, as we are not interested in the computational semantics of
CIF in this paper. We do require however a minimum set of properties that have to
be satisfied by the predicates. In the examples presented here, and in the tool im-
plementations of CIF, Pg, Pt, and Pr are terms of the language of predicate logic
[51], where for Pg and Pt the variables are taken from the set V∪V̇ , and for Pr, the
variables are taken from the set V ∪ V̇ ∪ {x+ | x ∈ V ∪ V̇}. As for expressions, the
set E is usually instantiated with the set of arithmetic expressions. Given an expres-
sion e and a value v, we assume e = v to be an element of Pi, i ∈ {g, t, r}; and we
assume that the predicates are closed under conjunction. Using these preliminaries,
a CIF automaton is defined next.

Definition 5 (Automaton). An automaton is a tuple

(V, init, inv, tcp, E, varC , actS , dtype)

where V ⊆ L is the set of locations; init, inv, tcp: V → Pt are functions that
associate to each location its corresponding initialization predicate, invariant, and
tcp predicate, respectively;E ⊆ V ×Pg×Aτ×(2V∪V̇×Pr)×V is the set of edges;
varC ⊆ V is the set of control variables; actS ⊆ A is the set of synchronizing
actions; and dtype ∈ V ⇀ D is the dynamic type mapping.

Starting from an automaton, more complex models can be constructed by
means of different operators. These include parallel composition, to model concur-
rent execution of systems; the synchronization operator, to declare synchronizing
actions in a parallel composition; the initialization operator, to specify the initial
conditions of a system; the variable scope operator, to declare identifiers as local;
the urgency operator to declare actions as urgent; the dynamic type operator to
associate dynamic types to variables; and the control variable operator to declare
variables as controlled. Section 3 presents in detail the informal semantics of these
operators. We use the term composition to refer to a model that contains zero or
more of these operators. The set C refers to the set of all compositions, and is
formally defined as follows.

Definition 6 (Compositions). The set of all compositions is defined by the abstract
grammar of Table 1. Where a ∈ A, u ∈ Pt, x ∈ V , e ∈ E ∪ {⊥} (⊥ is used to
denote the undefined value), aτ ∈ Aτ , and G ∈ D.

The next sections explain, informally and formally, the semantic of CIF mod-
els.
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C ::= α automaton
| C ‖ C parallel composition
| ctrlx(C) control variable operator
| υaτ (C) urgency operator
| Dx:G(C) dynamic type operator
| u� C initialization operator
| γa(C) synchronization operator
| |[V x = e, ẋ = e :: C ]| variable scope operator
| |[A a :: C ]| action scope operator

Table 1: CIF abstract grammar.

3. Semantic framework

In this section, the semantic framework is set up, which allow us to properly
explain the semantics of CIF. First we present the concepts of variable valuations
and flow trajectories. Next we describe the hybrid transition systems, which are
used to model the semantics of CIF compositions. Finally, a formal definition of
this semantic model is given.

3.1. Preliminaries

Semantically, the execution of a model causes changes to the values of the vari-
ables appearing in it. Thus, in the semantic framework it is necessary to represent
the values of the variables in a particular instant. For this purpose, we use the
concept of valuation, which is standard in semantics of processes with data. A val-
uation σ : (V∪V̇)→ Λ is a function that for each variable returns its corresponding
value. We use notation Σ , (V ∪ V̇)→ Λ to refer to the set of all valuations.

Even though predicates are abstract entities, we assume that a satisfaction rela-
tion σ |= u is defined, which expresses that predicate u ∈ Pt ∪Pg ∪Pr is satisfied
(i.e. it evaluates to true) in valuation σ. For predicate logic, this relation can be
defined in a standard way (see [51] for example). For a valuation σ, we define
σ+ , {(v+, c) | (v, c) ∈ σ}.

In CIF, the values of variables change as the result of the execution of discrete
actions, or as the result of time delays. The edges of the automata determine how
the values of variables change after performing an action, and invariants specify
how the values of variables evolve as time passes.

To model the evolution on the values of variables during time delays we use the
concept of variable trajectories. A variable trajectory is a function ρ : T⇀ Σ that
returns the valuations of the variables at each time point. In other words, ρ(s)(x)
is the value of variable x at time s along trajectory ρ. We assume the domain of
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variable trajectories to be closed intervals, i.e. intervals of the form [0, t], where
t ∈ T and 0 < t.

In the examples presented here, and in the semantic rules for dynamic types, we
refer to the evolution of a particular variable during time delays. From a variable
trajectory ρ it is possible to reconstruct the evolution of a variable during the time
delay that spans dom(ρ). Given a flow ρ, the evolution of a variable x during time
delay dom(ρ) can be seen as a function ρx : dom(ρ) → Λ , such that for each
time point s we have ρx(s) , ρ(s)(x). In this way, ρx(s) represents the value of
variable x at time point s. Having presented the basic concepts of the semantic
framework, we explain next the semantic model for CIF compositions.

3.2. Hybrid transition systems

The semantics of CIF compositions is given in terms of SOS rules, which in-
duce hybrid transition systems (HTS) [52]. The states of the HTS are of the form
(p, σ), where p ∈ C is a composition and σ is a valuation. As we stated earlier,
valuations are used to capture the phenomenon of discrete change in the values of
variables caused by the execution of actions in an automaton. There are three kind
of transition in the HTS, namely, action, time, and environment transitions. We
describe them in detail next.

Action transitions are of the form (p, σ)
a,b,X−−−→ (p′, σ′), and they model the

execution of an action a by composition p in an initial valuation σ, which changes
composition p into p′ and results in a new valuation σ′. Label b is a boolean that
indicates whether action a is synchronizing, and label X is the set of control vari-
ables1 of p and p′. The term active locations is used to refer to the set of locations
for which the initialization predicate holds. After an action is performed a unique
active location is picked.

As an example, consider the conveyor belt automaton shown in Figure 11, and
the initial valuation {(c,∆ + 1), (VB, 7)} (we use set notation for representing
valuations, and only the relevant variables are shown). It can execute action open
since the guard is true. After executing the action the active location changes to
Filling , which is represented by changing the init function so that it returns true
for location Filling and false for location Moving . The resulting automaton is
shown in Figure 12, and a possible new valuation is {(c, 15), (VB, 0)}. Note that
the value of c is changed arbitrarily after performing the transition. This is because
variables in CIF are not controlled by default, which means that their value can
change arbitrarily when a new value is not specified in the update predicate. If we
denote the automaton of Figure 11 as Conveyor [Moving ], and the automaton of

1Control variables are explained in Section 4.3.
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Figure 12 as Conveyor [Filling ], this transition can be depicted as

(Conveyor [Moving ],{(c,∆ + 1), (VB, 7)}) open,false,∅−−−−−−−→
(Conveyor [Filling ], {(c, 15), (VB, 0)}).

Note that in the previous transition, the synchronization label is false because
actions are non-synchronizing by default.

Moving
tcp : c ≤ 2 ∗∆
inv : ċ = 1

Filling
tcp : true
inv : VB ≤ Vmax ∧

V̇B = Q

true

when ∆ ≤ c act open do ({VB}, VB+ = 0)

when true act close do ({c}, c+ = 0)

Conveyor [Moving]

Figure 11: Model of a conveyor with initial predicate true.

Moving
tcp : c ≤ 2 ∗∆
inv : ċ = 1

Filling
tcp : true
inv : VB ≤ Vmax ∧

V̇B = Q

true

when ∆ ≤ c act open do ({VB}, VB+ = 0)

when true act close do ({c}, c+ = 0)

Conveyor [Filling]

Figure 12: Conveyor in the filling state, after executing open action.

Time behavior is captured by time transitions. Time transitions are of the form

(p, σ)
ρ,A,θ7−→ (p′, σ′), and they model the passage of time in composition p, in an

initial valuation σ, which results in a composition p′ and valuation σ′. Function
ρ is the variable trajectory that models the evolution of variables during the time
delay. Function θ : T ⇀ 2A is called guard trajectory [53], and it models the
evolution of enabled actions during time delays. For each time point s ∈ dom(θ),
the function application θ(s) yields the set of enabled actions of composition p at
time s. For every time transition ρ, dom(ρ) = [0, t], for some positive time point
t ∈ T, and dom(ρ) = dom(θ). Finally, label A contains the set of synchronizing
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actions of p and p′ 2. When time passes a unique location is picked.
Consider the automaton Conveyor (Figure 10), in initial valuation

{(c, 0), (VB, 1)}. Suppose the automaton performs a time delay of 2 time units.
Figure 13a shows a possible evolution of variables c and VB during the time delay,
i.e. ρc and ρVB . Figure 13b shows the evolution of the guard trajectories, encoded
in function θ. At the beginning there are no actions enabled, but after ∆ (∆ ≤ 2)
time units, the set of enabled actions changes to {open}.

T

Λ

c

VB

∆ 2

∆

(a)

T

Λ

∆ 2

{open}

∅

(b)

Figure 13: Example of trajectories during a time delay. (a) Variable trajectory. (b)
Guard trajectory.

After the time delay, the init predicate of the automaton Conveyor is changed
from c = 0 to true, which represents the fact that location Moving was picked. It
is necessary to replace this predicate by true, otherwise, after the time delay shown
here, the initialization predicate is false and the automaton has no initial locations.
At the end of the delay, the new valuation becomes {(c, 2), (VB, 1.9)}. The time
transition that describes this delay is written as follows:

(Conveyor , {(c, 0), (VB, 1)}) ρ,∅,θ7−→ (Conveyor [Moving ], {(c, 2), (VB, 1.9)}).

To model parallel execution of compositions, we need the notion of environ-

ment transitions, which are transitions of the form (p, σ)
A
99K (p′, σ′), and they

model the fact that composition p (p′) is consistent (see Definition 7) in valuation
σ (σ′). Label A is the set of synchronizing actions of p and p′. Intuitively, envi-
ronment transitions express which state changes by the environment are allowed.
Consistency is defined recursively as follows.

Definition 7 (Consistency). Given a valuation σ, we define consistency as follows:

2The set of synchronizing actions is not changed by transitions.
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• An automaton (V, init, inv, tcp, E, varC , actS ,dtype) is consistent in σ if
there is a location v ∈ V such that σ |= init(v) and σ |= inv(v).

• Composition p ‖ q is consistent in valuation σ if p and q are consistent in
valuation σ.

• Composition |[V x = e0, ẋ = e1 :: p ]| is consistent in valuation σ if there are
values v0 and v1, such that (σ |= (ei = vi)) ∨ ei = ⊥, i ∈ {0, 1}, and p is
consistent in valuation {x 7→ v0, ẋ 7→ v1} � σ, where, given two functions
f : A ⇀ C and g : A ⇀ C, function f � g : A ∪ B ⇀ C is defined as
follows:

f � g(x) =

{
f(x) if x ∈ dom(f)

g(x) if x ∈ dom(g) \ dom(f)

The variable scope operator |[V _, _ :: _ ]| is defined in Section 5.8.

• For the remaining operators the definition of consistency is extended point-
wise.

We use notation σ |= p to denote that composition p is consistent in valuation
σ. Alternatively, we say that σ is consistent with p.

As an example, consider the automaton Conveyor [Filling], depicted in Fig-
ure 12, and initial valuation {(VB, 4)} (as in the previous examples we only show
in the valuation the variables relevant for the example). Assume Vmax = 10. Tran-
sition

(Conveyor [Filling], {(VB, 4)}) ∅
99K (Conveyor [Filling], {VB, 8})

models the fact that the value of VB can be incremented by 4 units, given the fact
that the invariant is preserved.

Having informally explained the basic ideas behind the HTS induced by the
semantic rules, we give next the formal definition of these transition systems.

Definition 8 (Hybrid Transition System). A hybrid transition system (HTS) is a
tuple of the form (Q,A,−→ , 7−→, 99K) where Q , C × Σ, −→ ⊆ Q× (Aτ × B×
2A)×Q, 7−→⊆ Q× ((T⇀ Σ)× 2A × (T⇀ 2A))×Q, and 99K⊆ Q× 2A ×Q.

Even though fully formal, these definitions help to understand better the con-
cepts to come. In the next sections, the semantics of CIF is explained informally,
and in Section 5 formal definitions are provided.
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4. Informal semantics

In this section we explain CIF by means of a bottle filling line, which is de-
picted in Figure 14. It consists of a storage tank that is continuously filled with a
flow Qin , and a conveyor belt that supplies empty bottles.

We construct the example incrementally. First, the semantics of the conveyor
belt model of Figure 10 is informally explained. Next, operators are added to
modify its behavior in a convenient way. When we describe parallel composition,
the model of the liquid tank is presented, which will complete the bottle filling line
model.

VT

Q

VB

Qin

Figure 14: Bottle filling line.

4.1. Automata
In this section we explain informally the semantics of the automaton introduced

in Figure 10 by showing a run of the system described by it.
Initially, the execution of the automaton can only begin in the location Moving ,

in an initial valuation in which c = 0. Assume ∆ = 1.5. This means that no action
is enabled at the beginning, and only time can pass. Since the system is in location
Moving , the value of variable ċ will evolve according to equation ċ = 1, whereas
the remaining variables can assume arbitrary values (remember that ċ is not defined
to be the derivative of c yet).

Figure 15 shows one of the possible evolutions of the values of the variables
c and ċ as a function of time (the other variables are not shown to keep the plot
readable and the explanation simple). The time points at which discrete actions
take place are marked in the x-axis with the name of the corresponding action,
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and a dotted vertical line. Notice that when actions are performed a variable can
have two values: one before, and one after the action. This is because the values
of variables change (jump) on action transitions. The x-axis represents the time
points, and the y-axis the values. The curly braces above the plot show the locations
where the automaton is at a given time.

T

Λ

c

ċ

c

ċ

c

ċ

0.63

∆

open close open

Moving Filling Moving

Figure 15: Conveyor run.

Figure 15 shows that during the time delay the value of ċ remains constant
according to the equation ċ = 1, and the value c can change arbitrarily (in the
figure we have chosen a random function to represent this behavior). After a delay
of 0.63 time units the guard ∆ ≤ c becomes enabled. However, in this particular
run, the action is not executed immediately since actions are non-urgent by default.

At time 2 condition ∆ ≤ c still holds, and action open is executed. This causes
a jump in the values of both c and ċ. Since the update condition does not constrain
the new values of these variables, they can take any values. However, the value of
VB (not shown in the figure) cannot change arbitrarily, since the update predicate
enforces that VB = 0 holds after the action.

Once in the location Filling , the system performs another delay. Here the
values of c and ċ change randomly, since they are not constrained by any equation.
However, the values of V̇B and Q must be the same during this delay, since the
evolution of these values has to satisfy the predicate (equation) V̇B = Q.

After a certain time, action close is executed. This causes the value of variable
c to change to 0, as required by the update predicate. Note that the value of ċ has
to change to 1 to satisfy the invariant. The values of the remaining variables can
jump arbitrarily.

When location Moving is entered again the variables behave in a similar way
as described before. Notice that we depict the evolution on the value of c during
time as a continuous function, but since its behavior is not constrained, all kinds of
trajectories are possible.
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4.2. Dynamic type operator
In principle, during a time delay, the values of variables can change arbitrarily

as long as they satisfy the invariants and tcp predicates, as we saw previously. This
is not always desired. Consider the conveyor model, which has the variable ċ,
which represents the derivative of c. We do not want the values of c and ċ to evolve
independently as time passes. That is, given a flow ρ, we would like function ρc
to be a derivable function of time, and function ρċ to be the rate of change of the
value of ρc. Flows and invariants are not enough for ensuring this.

In hybrid formalisms, the evolution of the values of variables is constrained by
declaring a variable to be of a certain dynamic type [50]. Informally a dynamic
type specifies how the values of variables are allowed to change as time passes.
The most common dynamic types that can be associated to a variable are discrete,
continuous, and algebraic. The value of a discrete variable x remains constant in
time delays, and ẋ is the zero function. Given a continuous variable x, ρẋ is the
derivative of ρx for any variable trajectory ρ. The values of algebraic variables can
change arbitrarily during time delays.

In CIF, a dynamic type is a set of pairs of functions from time points to values.
For instance the discrete dynamic type Gdisc can be defined as follows:

Gdisc ,{(f, g) |〈∃t : 0 < t :dom(f) = [0, t] = dom(g) ∧
〈∀d, d′ : d, d′ ∈ [0, t] : f(d) = f(d′) ∧ g(d) = 0〉〉}

Similarly, the clock dynamic type Gclock is defined in the following way:

Gclock ,{(f, g) |〈∃t : 0 < t :dom(f) = [0, t] = dom(g) ∧
〈∀d : d ∈ [0, t] : f(d) = f(0) + d ∧ g(d) = 1〉〉}

And the continuous dynamic type Gcont can be defined as follows:

Gcont , {(f, g) | f is continuous in [0, t] ∧ g is the derivative of f in [0, t]}

Notice that, unlike other hybrid formalisms [54], the dynamic types of CIF do
not constrain the discrete (jumping) behavior of a variable. Instead, we use the
concept of control variables, as explained in Section 4.3.

In the conveyor model example, we want to associate continuous dynamic
types to variables c and VB , since we would like predicates ċ = 1 and V̇B = Q to
be interpreted as differential equations. On the other hand, we would like variable
Vmax, which represent the maximum volume of a bottle, to be a constant. Note that
we do not pose any constraint on variable Q, as we will need this when putting
the conveyor model in parallel with a tank model in Section 4.4. According to the
syntax of CIF, these dynamic types can be declared as shown in Equation 1

D{c:Gcont ,VB :Gcont ,Vmax :Gdisc}(Conveyor) (1)
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where we use notation:
D{x0:G0,...,xn−1:Gn−1}(p)

as a way to abbreviate the nesting of several dynamic type operators

Dx0:G0((. . .Dxn−1:Gn−1(p) . . .)).

Alternatively, these dynamic types can be specified as a part of the automaton.
We have chosen to use operators instead, to explain the concepts in a stepwise
manner. The usefulness of operators will be illustrated in Section 8.

For the conveyor example, if we declare the dynamic type of variable c to be
continuous then the evolutions shown in Figure 15 are no longer possible, since ċ
does not represent the derivative of c. Figure 16 shows a possible evolution of the
values of these variables after introducing the dynamic type.
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c

ċ

c

ċ
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ċ
∆

open close open

Moving Filling Moving

Figure 16: Conveyor run after introducing dynamic types.

4.3. Control variables
In CIF, the values of variables change arbitrarily after an action is executed,

unless this is restricted by the update predicate associated to the action or by the
invariants. It is often desirable that the model variables keep their values after
an action is performed, as it is the case in programming languages, or timed and
hybrid formalisms such as Uppaal [2] or Chi [55], respectively.

By declaring a variable as controlled, whenever an action is performed, the
value of that variable will remain constant, unless it belongs to the set of jumping
variables of the action. Furthermore, control variables can only be changed by the
composition that declares them as controlled. In this way, the concept of control
variables corresponds with the same concept in hybrid I/O automata [1, 50].

To illustrate the effect of the control variable operator, we show in Equation 2
the model of the conveyor, henceforth denoted as pConveyor

ctrl{Vmax ,VB ,c}(D{c:Gcont ,VB :Gcont ,Vmax :Gdisc}(Conveyor)) (2)
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where variables Vmax , VB , and c are declared as controlled. As with the dynamic
type operator, we abbreviate the nested application of control variable operators
using set notation. The behavior of variables c and ċ in this model is shown in
Figure 17. After action (open) is performed, the value of c cannot jump. Note that
after performing action close , the value jumps to 0 because it is explicitly required
by the update predicate of the edge that describes this action.
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open close open

Moving Filling Moving

Figure 17: Conveyor run after introducing control variable operator.

4.4. Parallel composition

To model the parallel execution of systems, CIF provides the parallel composi-
tion operator. When two compositions p and q are put in parallel, they can execute
synchronizing actions simultaneously and interleave asynchronous actions. They
interact by means of shared variables. The passage of time synchronizes in both
automata.

To illustrate parallel composition in CIF, we introduce first the model of a
tank (without declarations), which is shown in Figure 18. It has a unique initial
location Closed , representing the state in which the valve of the tank is closed (and
therefore the outgoing flowQ equals 0). In the Closed state, the volume of the tank
increases at rateQin , and its volume cannot exceed VTmax . When the tank is in the
Opened state, the outgoing flow is set to Qset , and the liquid enters the tank at rate
Qin − Q. In this state, the volume of the tank (VT ) cannot exceed the maximum
value allowed either. If VT reaches 0, then the Empty state is reached, where the
outgoing flow equals the incoming flow, and the system can linger in that state as
long as the liquid volume is 0.

In the previous model, we declare all variables that are associated to differential
equations, as continuous. These variables are VT and Q. We want Qin and Qset

to be constant (both after time delays, and after executing actions), thus we declare
them as discrete and controlled. In addition, it is not desirable that the volume
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Closed
tcp : 0 ≤ VT ≤ VTmax

inv : V̇T = Qin∧
Q = 0

Opened
tcp : 0 ≤ VT ≤ VTmax

inv : V̇T = Qin −Q∧
Q = Qset

Empty
tcp : true
inv : Q = Qin∧

VT = 0

act open

act close

act close

Tank

Figure 18: Tank model without declarations.

of the tank changes arbitrarily when we perform the close action, and we do not
want another component to modify the volume of the tank. Thus, we also declare
VT as controlled, and using a similar reasoning Q is made controlled as well. If
we denote the automaton depicted in Figure 18 as Tank , then the model of the
tank, henceforth referred to as pTank , with all the corresponding declarations can
be written as shown in Equation 3.

ctrl{VTmax ,Qin ,Qset ,VT }(D{VT :Gcont ,Q:Gcont ,Qin :Gdisc ,Qset :Gdisc}(Tank)) (3)

Figure 19 shows the evolution of the values of variables in a simulation run.
Initially Q can only be 0, whereas VT can assume any value that is between 0 and
VTmax . After a certain time delay, in which Q remains constant and VT evolves
according to V̇T = Qin , action open is executed. Observe that the value of VT
is not changed after this action is performed (it is a control variable), whereas Q
has to jump in order to satisfy equation Q = Qset . In the second time delay,
where the system is in the Opened state, the volume of the tank starts decreasing
(we assume Qin < Q) and Q has the same value as Qset during the entire delay.
When the volume of liquid in the tank reaches 0, further delays are not possible,
since that would violate the tcp predicate, thus action τ has to be executed and the
Empty state is entered. In this state, the tank remains empty (VT = 0), and the
outgoing flow decreases to the value of Qin (we assume Qin < Qset ). Finally,
action close is executed and the evolution of the variables in the last time delay
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shown in Figure 19 is as described before.
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Q = 0

Q = Qset
Q = Qin

Q = 0
open τ close

Closed Opened Empty Closed

Figure 19: Run of the tank.

Next, we have to build the bottle filling line model. Thereto, we must put the
models of Figures 2 and 3 (pConveyor and pTank respectively) in parallel. However,
this is not enough since actions are not synchronizing by default. Nevertheless,
for illustration purposes, we show in Figure 20 a run of the system when these
two models are put in parallel. We have depicted only variables relevant for our
example. The uppermost braces show the states in which the conveyor model is at
a given time, whereas the braces below these show the states of the tank. Initially
the conveyor is moving and the tank is in the closed state. In the first time delay the
values of variables VT and Q evolve as described previously, whereas the values of
variable VB change arbitrarily in the first two time delays, and they are not shown
in the plot. The first action that is executed is the open action in the tank, which
does not synchronize with the action of the same name in the conveyor, which is
executed later in time. When the conveyor performs its first action, variables VT
and Q are not affected, and the volume of liquid in the bottle (VB) starts increasing
at rate Q = Qset . When the tank is emptied (VT reaches 0), the tank performs a
τ action, and in Figure 20 it is possible to see how this does affect the behavior of
the conveyor model, since now the volume of liquid in the bottle increases but at
a rate equal to Qin . After a new delay, VB = Vmax (remember Vmax represents
the maximum volume of the bottle). As a consequence no further time delays are
allowed in the model, since in a parallel composition, time must be able to pass for
all the components. Thus, action close executes in the conveyor. After a certain
delay, the action close of the tank is performed, and the system starts behaving as
described before.

The next section presents a model in which the actions close and open of the
conveyor and the tank synchronize, yielding the desired synchronizing behavior
for the bottle filling line model.
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Figure 20: Run of conveyor and tank without explicit synchronization.

4.5. Synchronization operator

As we saw in the previous section, in CIF actions do not synchronize by default.
This gives the modeller more flexibility as pointed out in [38], and it allows us to
implement different communication patterns, as illustrated in Section 8.1. Given a
composition p, and an action a, if we want a to be executed synchronously when p
is composed in parallel, we declare action a as synchronizing.

A composition γa(p) declares action a to be synchronizing in p. When γa(p)
is put in parallel with a composition q, which also declares a as synchronizing,
action a has to be executed by γa(p) and q at the same time. Executions of a by
only one of these components are not possible. When γa(p) is put in parallel with a
composition r, which does not declare a as synchronizing, only γa(p) can execute
a (independently of r).

As an example, consider the model of the conveyor depicted in Figure 2,
which we denote as pConveyor ; and consider the model of the tank shown in Fig-
ure 3, denoted as pTank . The behavior of composition γclose(γopen(pTank )) ‖
γclose(γopen(pConveyor )) is illustrated in Figure 21. Here it is possible to see that
actions open and close must occur at the same time. Action open cannot be exe-
cuted earlier than ∆, because of the guard ∆ ≤ c in the edge of the conveyor. After
this time, both models can execute this action synchronously. When the conveyor
enters the state Filling , the volume of the liquid in the bottle starts rising, until it
reaches VTmax , at which point time cannot progress any further, and action close
has to be executed in the tank and in the conveyor at the same time.

Note that composition γclose(γopen(pTank ‖ pConveyor )) does not give the de-
sired behavior. If the models of tank and conveyor are composed in this way,
actions open and close can be executed asynchronously. Section 5 provides the
formal details.
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Figure 21: Run of conveyor and tank with explicit synchronization.

4.6. Urgency operator

In CIF models, actions are not urgent by default. This means that the execution
of an action can be delayed as long as the equations in the model allow it. To
change such behavior, urgency can be introduced by means of two concepts: time
can progress predicates and invariants, and the urgency operator. As we have seen
before, time can pass in an active location as long as its invariant and tcp predicates
are satisfied. If these cannot be satisfied by any time delay, only actions can be
executed, or the whole system deadlocks. In the conveyor model of Figure 2, when
the liquid in the bottle reaches its maximum allowed volume (Vmax ), time cannot
progress, which makes action close urgent.

Informally, an action is urgent if whenever it is enabled, time cannot progress3.
For an automaton, urgency can be expressed by using tcp predicates. However,
when parallel composition is involved, the definition of enabled actions becomes
more complex, and urgency can no longer be defined through tcp predicates in a
compositional way (see [38] and the example of Figure 4). For this purpose, CIF
has the urgency operator. Given a composition p and an action a, composition
υa(p) expresses that no time delay is possible if action a is enabled in p.

The issue of defining urgency in a compositional way has been addressed
in [56]. The authors define the semantics of timed systems in terms of timed tran-
sition systems. The definition of urgency for parallel composition is handled in
syntactic way, by means of a composition operator. On the other hand, we define
the semantics of urgency at the semantic level, using operations on the labels of the
hybrid transitions (see Section 5).

As an example, suppose we want to make action open urgent in the conveyor

3Note that an urgent action in CIF does not have priority over other urgent actions.
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model. This can be achieved with the aid of the urgency operator as shown in
Equation 4.

υopen(γclose(γopen(pTank )) ‖ γclose(γopen(pConveyor ))) (4)

In this model, if action open is enabled in both components (action open is syn-
chronizing), then time cannot longer pass and an action has to be executed (al-
though not necessarily open). In the model under consideration, the execution of
action open occurs at time ∆, since it is the earliest time at which this action is
enabled.

Note that if we would have used two urgency operators to enclose each compo-
nent of the bottle filling line separately, as shown in Equation 5, the model would
have deadlocked, since action open is enabled at time 0 in the tank, and therefore
time cannot pass. But this action is disabled in the conveyor, and since it must be
executed synchronously no action can be executed either.

υopen(γclose(γopen(pTank ))) ‖ υopen(γclose(γopen(pConveyor ))) (5)

4.7. Other operators

In this section we explain the informal semantics of the remaining CIF oper-
ators. Their semantics was introduced in previous works [55, 51], and therefore
they do not require a separate section for each one of them. Section 5 provides the
formal semantics of these operators.

The initialization operator allows to define the initial conditions of models in a
compositional way. Given a composition p and a predicate u, composition u � p
can start executing in initial valuations that satisfy u. For instance, we could have
set the initial volume of the tank in the following way:

(VT = 10)� (γclose(γopen(pTank )) ‖ γclose(γopen(pConveyor ))).

Actions and variables can be made local by means of the scoping operators.
Given a composition p and an action a, composition |[A a :: p ]| declares action
a as local, which means that a is not visible outside this composition, and as a
consequence it cannot be synchronized with other actions in a parallel context.
Similarly, given a composition p, expressions e0 and e1, and a variable x, compo-
sition |[V x = e0, ẋ = e1 :: p ]| declares variables x and ẋ as local, which means
that the local values of these variables are not visible outside this scope. Expres-
sions e0 and e1 define the initial values of the local variables. These expressions
can be⊥, which indicates that the variables are uninitialized and therefore they can
have any value in their domain.
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5. Formal semantics

In this section, we present the structured operational semantics (SOS) of CIF.
Formal semantics has several advantages since it gives a precise meaning to CIF
models, it provides a reference against which implementations can be judged, and
it enables the formal definition and proof of semantics-preserving model transfor-
mations.

Instead of taking the traditional approach for defining the semantics of hybrid
automata [48], we have chosen the SOS approach since it is better suited for guid-
ing the implementation process [57], and it allows us to use standard formats for
proving congruence [8].

The formal semantics described here associates, by means of inference rules,
a hybrid transition system with every CIF composition. The following sections
present the inference rules for constructing the three kinds of transition relations
for a given composition. The SOS rules are presented in the same order as the
operators are introduced in the abstract grammar of Table 1.

5.1. Automata

Rule 1 models the state change caused by the execution of an action, which
can be triggered in a state with valuation σ, only when there is a location v, and
an edge of the form (v, g, a, (W, r), v′), such that the initialization predicate of v
(init(v)), the guard g, and the invariant of v (inv(v)) are satisfied in σ; and it is
possible to find a new valuation σ′ such that the variables in the set (X∪varC)\W
do not change in σ′, the update predicate r is satisfied4 in σ′+∪σ, and the invariant
of the new location is satisfied in σ′. In Rule 1, idv denotes the function that
returns true only if the location equals v. More specifically, idv ∈ V → B, and
idv(w) , v ≡ w, where ≡ denotes syntactic equivalence.

(v, g, a, (W, r), v′) ∈ E, σ |= init(v), σ |= g, σ |= inv(v), σ′ |= inv(v′),

σ′+ ∪ σ |= r, σ �(X∪varC)\W= σ′ �(X∪varC)\W

((V, init, inv, tcp, E, varC , actS ,dtype), σ)
a,a∈actS ,X−−−−−−−→

((V, idv′ , inv, tcp, E, varC , actS ,dtype), σ′)

1

The previous rule shows how the initial predicate function is used as a program
counter, which keeps track of the actions that are executed. Note that a unique
active location is chosen after performing action a. As we will see later on, the
same happens when performing a time delay, or an environment transition. In

4Remember that σ′+ = {(x+, v) | (x, v) ∈ σ′} as defined in Section 3.
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an action transition we do not want control variables to jump arbitrarily. Control
variables can be declared in the automaton (varC), or in the control variable oper-
ator, in which case these declared variables will be included in the set X . This is
why we demand condition σ �(X∪varC)\W= σ′ �(X∪varC)\W to hold. Condition
σ′+ ∪ σ |= r is needed (instead of σ′ |= r) because r may refer to the values of
the variables before the action, which are in σ; and also to the new values of the
variables, which are in σ′+.

Rule 2 models the passage of time for an automaton. Time can pass for t time
units if the invariant associated with the active locations is satisfied in each point
in [0, t], the time can progress predicate is satisfied in [0, t), and the dynamic type
constraints specified by dtype are satisfied. Note that according to this rule, a time
transition can select in which of the possible initial states the automaton begins its
execution. This corresponds to the theory of hybrid automata (e.g. see [48]).

dom(ρ) = [0, t ], 0 < t ,dom(ρ) = dom(θ), ρ(0) |= init(v),
〈∀s : s ∈ dom(θ) : θ(s) = {a|(v, g, a, u, v′) ∈ E ∧ ρ(s) |= g}〉,
〈∀s : s ∈ [0, t] : ρ(s) |= inv(v)〉, 〈∀s : s ∈ [0, t) : ρ(s) |= tcp(v)〉,

〈∀x : x ∈ dom(dtype) : (ρx, ρẋ) ∈ dtype(x)〉

((V, init, inv, tcp, E, varC , actS ,dtype), ρ(0))
ρ,actS ,θ7−→

((V, idv, inv, tcp, E, varC , actS , dtype), ρ(t))

2

Finally, Rule 3 states that an automaton can perform an environment transition
in an initial valuation σ, if there is an active location v such that σ is consistent
with the invariant of v, and it can end in any valuation σ′ that satisfies the same
invariant, and where the variables controlled by the automaton remain unchanged.

σ |= init(v), σ |= inv(v), σ′ |= inv(v), σ �varC= σ′ �varC

((V, init, inv, tcp, E, varC , actS ,dtype), σ)
actS
99K

((V, idv, inv, tcp, E, varC , actS ,dtype), σ′)

3

5.2. Parallel composition

Rule 4 states that two synchronizing actions with the same label can execute in
parallel only if they share the same initial and final valuation, and if the action is
synchronizing in both compositions. The set of control variables X , is propagated
from the conclusions to the premises since the control variables in the scope of a
parallel composition are shared by both partners. The resulting action transition
is also synchronizing, which allows action a to synchronize with more than two
compositions.
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(p, σ)
a,true,X−−−−−→ (p′, σ′), (q, σ)

a,true,X−−−−−→ (q′, σ′)

(p ‖ q, σ)
a,true,X−−−−−→ (p′ ‖ q′, σ′)

4

Rules 5 and 6 model interleaving behavior of two compositions when executed
in parallel. In these rules, an action can be performed in one of the components
only if the initial and final valuations are consistent with the other composition,
and if this action is not synchronizing in the other component, which is expressed

by condition a /∈ A. In Rule 5, the environment transition (q, σ)
A
99K (q′, σ′) is

used to obtain the set of synchronizing action labels in composition q, to ensure
that the initial valuation σ is consistent with the active invariants and initialization
conditions of q, to select an initial location (in case there is more than one in q), and
to remove any initialization operators from q5. Note that q′, and not q, is placed
in the final state in the conclusion; this avoids occurrences of the initialization
operator in the resulting term and stores changes in local variables (if any).

(p, σ)
a,b,X−−−→ (p′, σ′), (q, σ)

A
99K (q′, σ′), a /∈ A

(p ‖ q, σ)
a,b,X−−−→ (p′ ‖ q′, σ′)

5

(q, σ)
a,b,X−−−→ (q′, σ′), (p, σ)

A
99K (p′, σ′), a /∈ A

(p ‖ q, σ)
a,b,X−−−→ (p′ ‖ q′, σ′)

6

Rule 7 models the fact that if two compositions are put in parallel, time can
pass only if allowed by both partners. As can be seen in this rule, the set of enabled
actions in the parallel composition at any point in time during the delay depends
both on the set of enabled actions and the set of synchronizing actions in each
component individually. In the expression (θp ∩ θq) ∪ (θp \ Aq) ∪ (θq \ Ap) in
the conclusion, the constants Ap and Aq, and the operators ∩ and \ must be lifted
accordingly to match the types. We avoid doing so here to keep the notation simple.

(p, σ)
ρ,Ap,θp7−→ (p′, σ′), (q, σ)

ρ,Aq ,θq7−→ (q′, σ′)

(p ‖ q, σ)
ρ,Ap∪Aq ,(θp∩θq)∪(θp\Aq)∪(θq\Ap)7−→ (p′ ‖ q′, σ′)

7

The construction of the guard trajectory in the conclusion deserves some ex-
planation. According to the description of the time transition given in Section 3,

5Removing initialization operators is important because we want them to influence only the initial
behavior of the system.
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the guard trajectory in the conclusion should model the set of enabled actions at a
given time in the parallel composition p ‖ q. Let Ai be the set of synchronizing
actions of composition i, i ∈ {p, q}, and θi(s) the set of enabled actions of i at
time s, then an action a is enabled at time s in p ‖ q if at least one of the following
conditions holds:

1. Action a is enabled in both components, which can be expressed as a ∈
θp(s) ∩ θq(s). A simple case analysis will convince the reader that when
an action is enabled in both components, then it is enabled in the parallel
composition of these, irrespective of whether a is synchronizing.

2. Action a is enabled in p, and is not synchronizing in q, which can be ex-
pressed as a ∈ θp(s) \Aq.

3. Symmetrically, a ∈ θq(s) \Ap.

Rule 8 defines the environment transition behavior for parallel composition.
The resulting set of synchronizing actions is the union of the synchronizing actions
of p and q, and the end valuation of all transitions must match.

(p, σ)
Ap
99K (p′, σ′), (q, σ)

Aq
99K (q′, σ′)

(p ‖ q, σ)
Ap∪Aq
99K (p′ ‖ q′, σ′)

8

5.3. Control variable operator

In Rule 9, variable x is added to the set of control variables of the transition in
the premise. In this way, x can only be changed by an automaton if this change is
explicitly specified (see Rule 1).

(p, σ)
a,b,X∪{x}−−−−−−→ (p′, σ′)

(ctrlx(p), σ)
a,b,X−−−→ (ctrlx(p′), σ′)

9

The operator has no effect in time transitions, as expressed by Rule 10. Rule 11
allows an environment transition only if the control variable is not changed in the
premise. Thus, when used in interleaving parallel composition, this will ensure that
the value of a control variable will not be changed by a parallel process outside the
scope of the operator.

(p, σ)
ρ,A,θ7−→ (p′, σ′)

(ctrlx(p), σ)
ρ,A,θ7−→ (ctrlx(p′), σ′)

10
(p, σ)

A
99K (p′, σ′), σ(x) = σ′(x)

(ctrlx(p), σ)
A
99K (ctrlx(p), σ′)

11
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5.4. Urgency operator
Rule 12 specifies that the urgency operator restricts the time behavior of a com-

position in such a way that time can pass for as long as no urgent action is enabled.

dom(ρ) = [0, t], (p, σ)
ρ,A,θ7−→ (p′, σ′), 〈∀s : s ∈ [0, t) : a /∈ θ(s)〉

(υa(p), σ)
ρ,A,θ7−→ (υa(p

′), σ′)
12

The urgency operator affects only the time transition rules. Action and envi-
ronment transitions remain unchanged as expressed in Rules 13 and 14 (although
action behavior can be influenced by the urgency operator, since it can prevent
certain guarded actions from taking place if urgent actions are enabled).

(p, σ)
a′,b,X−−−−→ (p′, σ′)

(υa(p), σ)
a′,b,X−−−−→ (υa(p

′), σ′)
13

(p, σ)
A
99K (p′, σ′)

(υa(p), σ)
A
99K (υa(p

′), σ′)
14

5.5. Dynamic type operator
Rule 15 specifies that, for time transitions, the dynamic type operator ensures

that the trajectories for the variable x and the dotted version of the variable ẋ are
restricted to the behavior that is specified by the set of pairs of solution functions
G.

(p, σ)
ρ,A,θ7−→ (p′, σ′), (ρx, ρẋ) ∈ G

(Dx:G(p), σ)
ρ,A,θ7−→ (Dx:G(p′), σ′)

15

The dynamic type operator has no effect on action or environment transitions
as expressed by Rules 16 and 17.

(p, σ)
a,b,X−−−→ (p′, σ′)

(Dx:G(p), σ)
a,b,X−−−→ (Dx:G(p′), σ′)

16
(p, σ)

A
99K (p′, σ′)

(Dx:G(p), σ)
A
99K (Dx:G(p′), σ′)

17

5.6. Initialization operator
Rules 18, 19, and 20 formalize the fact that the initialization operator allows

transitions only for those initial valuations that satisfy the initialization predicate.

(p, σ)
A
99K (p′, σ′), σ |= u

(u� p, σ)
A
99K (p′, σ′)

18
(p, σ)

a,b,X−−−→ (p′, σ′), σ |= u

(u� p, σ)
a,b,X−−−→ (p′, σ′)

19

(p, σ)
ρ,A,θ7−→ (p′, σ′), σ |= u

(u� p, σ)
ρ,A,θ7−→ (p′, σ′)

20
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5.7. Synchronization operator
The term γa(p) defines the basic action label a as synchronizing. Synchro-

nization occurs only in the context of parallel composition, thus the composition
γa(p) must be placed in parallel with another component to observe the effect of
the synchronization operator.

The above is formalized in the SOS rules by altering the edges of the transi-
tions, as shown in Rules 21, 22, and 23. More specifically, for time behavior (Rule
21), the synchronization operator only changes the set of synchronizing actions in
the labels of time transitions. For action transitions (Rule 22) the action a is made
synchronizing if the action label coincides with a, and for environment transitions
(Rule 23) a is added to the set of synchronizing actions given by the premise.

(p, σ)
ρ,A,θ7−→ (p′, σ′)

(γa(p), σ)
ρ,A∪{a},θ7−→ (γa(p

′), σ′)
21

(p, σ)
a′,b,X−−−−→ (p′, σ′)

(γa(p), σ)
a′,b∨a′=a,X−−−−−−−−→ (γa(p

′), σ′)
22

(p, σ)
A
99K (p′, σ′)

(γa(p), σ)
A∪{a}
99K (γa(p

′), σ′)

23

5.8. Variable scope operator
The variable scope operator (also called variable hiding) introduces a local

variable and its dotted version in a composition. These variables are invisible out-
side of the scope, and, conversely, global variables with the same name cannot be
modified inside the scope.

Rule 24 is similar to the variable scope rule presented in [51]. In its premise,
the variable being declared is removed from the set of control variables, because
if x ∈ X then x refers to a global variable. Predicate (σ |= (ei = di)) ∨ ei = ⊥
models the fact that the value of expression e in the valuation σ is di, unless ei = ⊥,
in which case di can be any value. Condition x ∈ X ⇒ σ(x) = σ′(x) in rule 24

is used since in an action transition (p, σ)
a,b,X−−−→ (p′, σ′), it must be the case that

σ �(X\W )= σ′ �(X\W ), where W is the set of all the variables that are changed by
action a; and since all ocurrences of variable x in the set of jumping variables in the
automaton refers to the local variable, the global variable x cannot be a jumping
variable of the action a. Therefore, if it is a control variable then it cannot change
its value.

(σ |= (e0 = d0)) ∨ e0 = ⊥, (σ |= (e1 = d1)) ∨ e1 = ⊥, x ∈ X ⇒ σ(x) = σ′(x)

(p, {x 7→ d0, ẋ 7→ d1} � σ)
a,b,X\{x}−−−−−−→ (p′, {x 7→ d′0, ẋ 7→ d′1} � σ′)

(|[V x = e0, ẋ = e1 :: p ]|, σ)
a,b,X−−−→ (|[V x = d′0, ẋ = d′1 :: p′ ]|, σ′)

24
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Rule 25 is similar to the action transition rule for variable scope. For this rule
we make use of the trajectory overwriting operator, which behaves in a similar way
as the function overwriting operator, and is defined below.

Definition 9 (Trajectory overwriting). Given a time point t, trajectory ρ ∈ [0, t]→
V → Λ, a function f ∈ [0, t] → Λ, and a variable x, function ({x 7→ f} � ρ) ∈
[0, t]→ V → Λ is defined as follows:

({x 7→ f} � ρ)(s)(y) =

{
f(s) if x = y

ρ(s)(y) if x 6= y

for all s ∈ [0, t], for all y ∈ V .

Using the trajectory overwriting operator, we can define the time rule for the
variable scope operator.

(σ |= e0 = d0) ∨ e0 = ⊥, (σ |= e1 = d1) ∨ e1 = ⊥,dom(ρ) = [0, t]

(p, {x 7→ d0, ẋ 7→ d1} � σ)
{x7→f0,ẋ 7→f1}�ρ,A,θ7−→ (p′, {x 7→ d′0, ẋ 7→ d′1} � σ′)

(|[V x = e0, ẋ = e1 :: p ]|, ρ(0))
ρ,A,θ7−→ (|[V x = d′0, ẋ = d′1 :: p′ ]|, ρ(t))

25

In this rule, the initial valuation ρ(0) is used in the conclusion since we must

ensure that for all time transitions (p, σ)
ρ,A,θ7−→ (p′, σ′) it is the case that σ = ρ(0).

The same holds for the final valuation in the conclusion.
Finally Rule 26, which is similar to Rule 24 for action transitions, specifies the

environment behavior for the variable scope operator.

(σ |= e0 = d0) ∨ e0 = ⊥, (σ |= e1 = d1) ∨ e1 = ⊥,
(p, {x 7→ d0, ẋ 7→ d1} � σ)

A
99K (p′, {x 7→ d′0, ẋ 7→ d′1} � σ′)

(|[V x = e0, ẋ = e1 :: p ]|, σ)
A
99K (|[V x = d′0, ẋ = d′1 :: p′ ]|, σ′)

26

5.9. Action scope operator
The action scope operator introduces local actions in an automaton. These

actions are visible outside the scope as internal τ actions, and therefore cannot
be synchronized with global actions (note that τ cannot be made synchronizing).
Rules 27 and 28 model the action behavior of this operator, where the name of the
local action is replaced (in the arrows of the action transitions) by τ , and synchro-
nization is prevented.

(p, σ)
a,b,X−−−→ (p′, σ′)

(|[A a :: p ]|, σ)
τ,false,X−−−−−→ (|[A a :: p′ ]|, σ′)

27
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(p, σ)
a′,b,X−−−−→ (p′, σ′), a′ 6= a

(|[A a :: p ]|, σ)
a′,b,X−−−−→ (|[A a :: p′ ]|, σ′)

28

For time transitions (Rule 29), the operator affects the set of synchronizing
actions as well as the guard trajectory. Since a is not visible outside its scope, if a
is declared as urgent in an outer scope this should not affect the time behavior of,
for instance, υa(|[A a :: p ]|). Thus we must remove a from the guard trajectory. As
in the previous rules, we have overloaded the symbols {a} and \ used in the guard
trajectory in such a way they the match the types.

(p, σ)
ρ,A,θ7−→ (p′, σ′)

(|[A a :: p ]|, σ)
ρ,A\{a},θ\{a}7−→ (|[A a :: p′ ]|, σ′)

29

In Rule 30, for environment transitions, the operator removes the local action
from the set of synchronizing actions, since it cannot synchronize outside its scope.

(p, σ)
A
99K (p′, σ′)

(|[A a :: p ]|, σ)
A\{a}
99K (|[A a :: p′ ]|, σ′)

30

6. CIF as an interchange format

This section discusses CIF as an interchange format. In Section 6.1 we il-
lustrate the relation that exists between CIF and some of the most important for-
malisms for modeling timed and hybrid systems. For this, we show how ubiquitous
concepts in some of the most prominent timed and hybrid formalisms can be repre-
sented in CIF. To the best of our knowledge, the combination of concepts that CIF
features is not present in any other compositional formalism. The blend of differ-
ent concepts in CIF gives as a result a formalism where models may not be directly
expressed in the target formalisms, such as Uppaal. In Section 6.2 we explain how
linearization can help to overcome this problem. A valid question is whether the
formalisms discussed in this section cannot be used as interchange format instead
of CIF. To answer this, in Section 6.3 we highlight features of CIF that are not
existent in these formalism.

For more details about transformations between CIF and formalisms and tools
such as Uppaal, SpaceEx, gPROMS, Modelica, Sequential Function Charts, and
Matlab/Simulink, we refer the interested reader to the material cited in Section 1.3.
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6.1. Direct mapping of concepts from other formalisms to CIF

6.1.1. Uppaal
Uppaal [58] is a formalism for modeling timed systems using timed automata.

Its associated tool [2] is very well known in the area of verification and analysis of
timed systems.

As in CIF, a Uppaal automaton consists of locations to specify the different
computational states of a system, and transitions between locations to model the
discrete behavior. Figure 22 shows two Uppaal automata, having four locations
and three transitions. The passage of time is captured by clocks, which can be
reset in transitions. In Figure 22 there are two clock variables, x and y. Each
location contains an invariant predicate that restricts the passage of time: time can
pass for as long as the invariant is satisfied. In Figure 22, time delays in location l0
are possible for as long as x ≤ 10. Transitions between locations can have guards,
a synchronization label (used as a channel), and an variable update. In Figure 22
the edge from l0 to l1 can be triggered if 5 ≤ x. Similarly, executing the action a?
in automaton Beta causes the clock variable y to be reset to 0. These two edges can
only be executed synchronously since the two automata communicate via channel
a. Automata can be composed in parallel, forming what is called a network of
automata.

Figure 22: A network of two automata in Uppaal.

Additionally, locations can be marked as urgent, which means that time cannot
pass when the system is in that location. In Figure 22 location l1 is marked as ur-
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gent, and therefore no time delays are possible until the system leaves it. Channels
can also be declared as urgent. In this case, time cannot pass if a synchronization
in that channel is possible. For the example we are considering in this section, if
automaton Alpha is in location l2 and Beta is in location k1, then time can pass until
the edge going from k1 to k2 is triggered. After that, synchronization on channel c
is possible, and since this channel is urgent, delays are no longer possible.

Equation 6 shows the CIF translation of the Uppaal model presented below,
where automata α and β are depicted in Figure 23.

υc(γa,c,b(α) ‖ γa,c(β)) (6)

l0
inv : x ≤ 10

l1
tcp : false

l2

l3

when 5 ≤ x act a

act b

act c

(a) Automaton α.

k0

k1

k2

k3

act a do y := 0

when 7 ≤ y act τ

act c

(b) Automaton β.

Figure 23: Uppaal automata translated to CIF.

6.1.2. SpaceEx
SpaceEx is one of the most sophisticated tools for reachability analysis of

hybrid automata [59]. SpaceEx models consist of one or more hybrid automata,
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which interact in parallel by means of synchronizing actions and shared variables.
Figure 24 shows a SpaceEx model of a bouncing ball. Its semantics is similar to
the one of CIF. Locations are depicted as rectangles with rounded corners to be
consistent with the notation used in the SpaceEx related publications. Variable h
represents the height of the ball, v its velocity, g is the gravitational constant, and
d is the dampening factor. In the state physics , the first predicate 0 ≤ h repre-
sents the invariant, whereas the second predicate h′ == v ∧ v′ == g is used to
represent the flow conditions that govern the continuous evolution of the variables
during time delays. The automaton contains only one edge, exiting and entering the
same location. The first line, hop, represents the action that is executed; predicate
h ≤ 0 ∧ v < 0 represents the guard; and the assignment v := −d ∗ v determines
how the value of variables get updated after performing the action.

physics
0 ≤ h

h′ = v ∧ v′ = −g

hop
h ≤ 0 ∧ v < 0
v := −d ∗ v

Figure 24: SpaceEx model of a bouncing ball.

SpaceEx supports the notion of controlled variables. In the automaton of Fig-
ure 24 we assume variable h is controlled, which means that only that automaton
can change its value.

Flows and invariants in SpaceEx are readily translated to CIF invariants.
Guards, actions, and updates in the edges of the SpaceEx automata can be rep-
resented using the corresponding CIF concepts. Finally, controlled variables can
be expressed also in CIF by means of the control variable operator. Figure 25
shows the model of the bouncing ball in CIF.

In SpaceEx, actions can be connected, and as a result, all the connected actions
must be executed synchronously in the model. Automata can read the controlled
variables in other automata. Figures 26 and 27 show two additional automata re-
spectively: a hop counter, which keeps track of the number of times the ball hits
the ground; and a controller automaton, which re-initializes the ball velocity to I
when it is bouncing below a certain threshold MH (minimum height) for a given
period of time T . Action hop of automata bouncing ball and hop counter are
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physics
inv : 0 ≤ x

∧ x′ = v ∧ v′ = −g

when x ≤ 0 ∧ v < 0 act hop do v := −c ∗ v

Figure 25: CIF model of a bouncing ball (αbball ).

connected, and therefore they synchronize. Automaton controller can only read
variable x, whereas the velocity, represented by variable v, is controlled at the top
level, which means that all the automata can change its value.

counting

hop
hops := hops + 1

Figure 26: SpaceEx model of the hop counter

In CIF the synchronization of the connected actions is achieved by means of the
synchronizing action operator. The control information about variables is specified
using the control variable operator. Equation (7) shows this, where automata αhop

and αcontroller are the CIF translation of the automata hop counter and controller,
respectively. We omit is definition here since it is trivial, as can be observed from
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watching
waiting
y′ = 1

x ≤ MH
y := 0

MH < x

0 ≤ x ∧ T ≤ y
v := I

Figure 27: SpaceEx model of the ball controller

the bouncing ball translation.

ctrlv,g,I,T,MH (γhop(ctrlx(αbball )) ‖ γhop(ctrlhops(αhop)) ‖ αcontroller ) (7)

6.1.3. gPROMS
gPROMS is an equation-based modeling language for describing and simulat-

ing complex, controlled, hybrid systems, which focuses on the process industry.
It is an structured language that features a clear division between continuous dy-
namic specifications (called “models”), and discrete behavior specifications (called
“processes”).

Listing 1 shows the gPROMS specification corresponding to the continuous
behavior of a bouncing ball. It contains two equations separated by a semi-colon.
The first equation $h=v, bounds the derivative of variable h, represented using
the dollar sign, to variable v. This equation has to hold at all times during the
simulation. The second equation is a case equation. Variable ballPosition

behaves as a location or program counter. If the variable is set to air, then equation
$v = -g is active. If the variables is set to ground, then equation $v = 0 is
active. Changes to the active equations happen when the switching conditions
specified by the SWITCH TO keywords become true.

Listing 1: Equations of the bouncing ball model.
$h=v;
CASE ballPosition OF

WHEN air:
$v=-g;
SWITCH TO ground IF h<=0.0 AND v<=0.0;

WHEN ground:
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$v=0.0;
SWITCH TO air IF NOT h<=0.0 AND v<=0.0;

END

The CIF model corresponding to the bouncing ball equations consist of the
parallel composition of two automata. The first equation is translated to automaton
that has only one location and predicate ḣ = v as invariant. The case equation
is translated into the automaton shown in Figure 28. The branches of the case
statement are translated into locations in the automaton. The invariants of each
location are the equations of the case branches. Locations are connected with edges
having as guards the switching conditions. To reflect the fact that switching is
urgent (i.e. no time can pass) the appropriate tcp predicates are added.

air
inv : v̇ = −g

tcp : h ≤ 0 ∧ v ≤ 0

ground
inv : v̇ = 0

tcp : 0 ≤ h ∧ 0 ≤ v

when 0 ≤ h ∧ 0 ≤ v act τ

when h ≤ 0 ∧ v ≤ 0 act τ

Figure 28: gPROMS case equation translated to CIF.

The discrete behavior of the bouncing ball is modeled using gPROMS process.
Listing 2 shows this specification in gPROMS. The CONTINUE UNTIL command
waits until condition 0 <= h becomes true, and then it proceeds with the next
statement. REINITIAL can be regarded as ordinary assignments. In gPROMS all
discrete commands must be executed when they are enabled.

Listing 2: Discrete part of the bouncing ball model.
WHILE TRUE DO

SEQUENCE
CONTINUE UNTIL h<0.0
REINITIAL

v
WITH

v=-d*OLD(v);
END
REINITIAL
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h
WITH

h=0.0;
END
RESET

n:=OLD(n)+1.0;
END

END
END

Figure 29 shows the CIF automaton corresponding to the gPROMS specifica-
tion of Listing 2. The CONTINUE UNTIL is translated into a location whose tcp
predicate is the closed negation of the continuation condition. An edge with this
condition as guard connects this location with the location corresponding to the
next instruction. Assignments are translated into CIF assignments, and the tcp
predicates of the remaining locations are set to false to reflect the fact that these
sentences cannot be delayed.

tcp : 0 ≤ h tcp : false

tcp : falsetcp : false

when h ≤ 0 act τ

do v := −d ∗ v

do h := 0

do n := n+ 1

Figure 29: gPROMS process translated to CIF.

Additional elements of gPROMS that are straightforwardly supported by CIF
include also parallel composition, if statements, among others.

6.1.4. Chi
Chi is a formalism for modeling and simulation of hybrid systems [60]. It is

based on process algebra, and it integrates concepts from dynamics and control
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theory. Equation 9 shows a Chi model of a tank controller. It consists of a discrete
variable n, which represents the status of the valve (1 means open, 0 closed), a
continuous variable V representing the tank volume, and two variables Qi and
Qo representing the incoming and outgoing flow from the tank, respectively. The
model consists of a variables declaration part, followed by an initial assignment of
values to the model variables, and a model specification part. The latter component
consists of the parallel composition of an equation of the form:

V̇ = Qi −Qo, Qi = n · 5, Qo =
√
V (8)

together with an infinite repetition (specified by the operator ∗(_)) of two sequential
guarded assignments. In equations, a comma stands for the conjunction operator.

〈 disc n, cont V,alg Qi, Qo

, n = 0, V = 10

| V̇ = Qi −Qo

, Qi = n · 5
, Qo =

√
V

‖ ∗(V ≤ 2→ n := 1;V ≥ 10→ n := 0)
〉

(9)

Elements such as equations, guarded action updates, sequential composition,
alternative composition, while loops, and tail recursion can be easily translated to
CIF. Figure 30 shows the CIF model corresponding to the discrete part of the Chi
model of Equation (9). The continuous part is realized though an automaton having
one initial location, and Equation (8) as invariant, which we name α0. Then, the
Chi model of Equation (9) is equivalent to the following model:

n = 0 ∧ V = 0� α0 ‖ α1

In MULTIFORM deliverable D.1.2.1 [61] we formalize the translation of process
translating process algebraic constructs to CIF.

CIF operational semantics is inspired by that of Chi 2.0 [55]. For instance, the
idea of using guard trajectories for defining urgency was taking from the semantics
of the latter formalism. However CIF and Chi differ in several aspects: for instance
in CIF parallel composition is a restriction on the behavior of the components,
synchronization is defined in a different way, and the notion of control variables is
not present in Chi.

6.2. Indirect mapping of other formalisms to and from CIF
So far we have shown examples of models in different formalisms, which could

be (easily) translated to CIF. Thus, given two formalisms, it is possible to identify
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when V ≤ 2 do n := 1

when 10 ≤ V do n := 0

Figure 30: CIF representation of the discrete part of the tank Chi controller model
(α1).

subsets of these which can be translated to each other. Figure 31 illustrates this,
where the big circles represent the set of models that can be expressed with a for-
malisms, and colored circles are the language subsets. In this figure, the two yellow
circles correspond to the subset that can be translated, which is expressed by means
of an arrow connecting them.
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Figure 31: Model transformations between two formalisms.

However, there are elements of other formalisms that cannot be directly trans-
lated to CIF. Conversely, CIF contains operators such as urgency, synchronization,
and control variables that are not natively supported by may formalisms to which
CIF has to be translated to. To overcome this problem, it is possible to rewrite
models using other constructs that are supported in the target language (see Fig-
ure 31). In particular, certain operators can be eliminated in terms of other CIF
constructs. For instance, urgency can be implemented by means of the tcp pred-
icates. In the context of CIF this process is called process-algebraic linearization,
and it was formalized in [62], and implemented in [63].

We illustrate what we have stated above with an example. Equation (10) shows
a CIF composition, featuring the use of synchronization and urgency operators,
where automata αi, i ∈ {0, 1, 2} are depicted if Figure 32.

υa(γa(α0 ‖ α1) ‖ γa(α2)) (10)
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Most formalisms do not support the possibility of specifying urgency and synchro-
nization constraints. In such cases, the model of Equation (10) cannot be translated
directly. However, the operators can be eliminated, resulting in the automaton
shown in Figure 33.

when x ≤ 1 act a

(a) Automaton α0

when y ≤ 2 act a

(b) Automaton α1

when 0 ≤ x act a

(c) Automaton α2

Figure 32: Three CIF automata that synchronize on urgent action a.

tcp : (1 < x ∨ x < 0)
∧ (2 < y ∨ x < 0)

when (0 ≤ x ≤ 1) ∨ (y ≤ 2 ∧ 0 ≤ x)
act a

Figure 33: Linearization of the three automata

In general, the state space may become large as a result of the linearization
process. We show in [62] how this may be circumvented by means of variables
(called location pointers) that keep track of the active locations of the intervening
automata.

6.3. Limitations of the discussed formalisms as interchange format

In this section we discuss why CIF is necessary as an interchange format, in-
stead of using one of the existing formalisms for this purpose.

Being a formalism for specifying timed systems, Uppaal does not provide sup-
port for concepts such as differential equations, or urgency conditions over differ-
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ential variables. However, an interchange format for hybrid languages needs to
have these features.

SpaceEx only provides support for a limited for of urgency, which can be spec-
ified by means of invariants. For instance, urgency conditions involving disjunc-
tions, or global urgency conditions are not supported by SpaceEx. However lan-
guages such as Uppaal, gPROMS, or Chi, support more sophisticated forms of
urgency. CIF can deal with these forms.

In addition, synchronization in SpaceEx is limited to connected actions. CIF
provides more flexibility in this regard, as shown in Section 8.1.

Discrete variables are not supported either, which makes it inconvenient for
transformations to other formalisms that have this feature.

gPROMS does not support concepts such as action synchronization, control
variables, and urgency across parallel composition and synchronizing actions. We
have seen that target formalisms such as Uppaal or SpaceEx provide these features,
and thus the importance of supporting them.

7. Validation of the semantics

The SOS rules presented in this work are basically definitions. As such, it is
not possible to talk about mathematical correctness of the specification. However,
there are important properties that we want to be valid in our semantics. The first
of these properties is that bisimulation is a congruence for the operators. This is
important because it enables us to replace equivalent compositions without chang-
ing the meaning of the whole model, making this property essential for reasoning
about models [8]. Secondly, we prove properties on the transition system induced
by the deduction rules given in Section 5. These properties validate our insights
about the three kinds of transitions. Lastly, we enunciate a number of properties
that reflect our intuitive understanding of CIF operators, and we check that the SOS
rules guarantee these properties.

7.1. Stateless bisimilarity
To compare two compositions, we use the notion of stateless bisimilarity,

which is the most robust equivalence for transitions systems with data [8]. Next,
we enunciate the definition of stateless bisimulation.

Definition 10 (Stateless bisimulation). A symmetric relation R ⊆ C×C is called a
stateless bisimulation relation if and only if for all (p, q) ∈ R the following transfer
conditions hold.

• 〈∀σ, a, b,X, p′, σ′ :: (p, σ)
a,b,X−−−→ (p′, σ′) ⇒ 〈∃q′ :: (q, σ)

a,b,X−−−→ (q′, σ′) ∧
(p′, q′) ∈ R〉〉
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• 〈∀σ, ρ,A, θ, p′, σ′ :: (p, σ)
ρ,A,θ7−→ (p′, σ′) ⇒ 〈∃q′ :: (q, σ)

ρ,A,θ7−→ (q′, σ′) ∧
(p′, q′) ∈ R〉〉

• 〈∀σ,A, p′, σ′ :: (p, σ)
A
99K (p′, σ′) ⇒ 〈∃q′ :: (q, σ)

A
99K (q′, σ′) ∧ (p′, q′) ∈

R〉〉

Two CIF compositions p and q are said to be bisimilar, denoted as p↔ q, if
and only if there exists a stateless bisimulation relation R such that (p, q) ∈ R.

An important property of the semantics is that it enables algebraic reasoning
by allowing to replace equivalent (bisimilar) compositions. This is formalized in
the following theorem.

Theorem 1 (Bisimulation is a congruence). Bisimulation is a congruence for all
CIF operators.

Proof. The above theorem can be proved by noticing that all CIF SOS rules are
in process-tyft format, which guarantees the congruence for stateless bisimilarity
[8].

7.2. Properties of the hybrid transition systems

When designing the SOS rules, one has in mind certain invariants for the dif-
ferent kind of transitions. These invariants are properties that must always hold for
every transition, and they were informally described in Section 3. For instance, for

every environment transition (p, σ)
A
99K (p′, σ′), we want A to be the set of syn-

chronizing actions of compositions p and p′. Similarly, every state of the transition
system induced by the SOS rules should be a consistent one, according Definition 7
(Consistency). In this section, we give a formal statement of such properties. In
Appendix A and Appendix B we prove that the SOS rules, defined in Section 5,
induce hybrid transition systems that satisfy these properties.

The first property states that environment transitions correctly capture the no-

tion of consistency. Given an environment transition (p, σ)
A
99K (p′, σ′), we want

valuation σ (σ′) to be consistent with composition p (p′ respectively). Using Defi-
nition 7, we can state this as follows.

Property 1 (Consistency in environment transitions). For all p, p′, σ, σ′, and A
we have:

(p, σ)
A
99K (p′, σ′)⇒ σ |= p ∧ σ′ |= p′

For the next property we need to define the set of synchronizing actions of a
composition.
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Definition 11 (Set of synchronizing actions). The set of synchronizing actions of a
composition is defined recursively as follows.

sync((V, init, inv, tcp, E, varC , actS , dtype)) = actS
sync(p ‖ q) = sync(p) ∪ sync(q)
sync(γa(p)) = {a} ∪ sync(p)
sync(u� p) = sync(p)
sync(|[V x = e, ẋ = e :: p ]|) = sync(p)
sync(|[A a :: p ]|) = sync(p) \ {a}
sync(υaτ (p)) = sync(p)
sync(Dx:G(p)) = sync(p)
sync(ctrlx(p)) = sync(p)

Using the definition above, we can express the property that states that the label
of environment transitions coincides with function sync(p) and sync(p′), which, in
turn, implies that the set of synchronizing actions is not changed by an environment
transition.

Property 2 (Synchronizing actions in environment transitions). For all p, p′, σ, σ′,
and A we have:

(p, σ)
A
99K (p′, σ′)⇒ sync(p) = A ∧ sync(p′) = A

The environment transitions initialize the compositions by picking a unique ac-
tive location for each automaton contained inside them. A property of environment
transitions is that once this unique initial location is picked, it cannot be changed
by another environment transition. The property is formulated below.

Property 3 (Closure of initialization). For all p, p′, p′′, σ, σ′, ς , ς ′, A, and B we
have:

(p, σ)
A
99K (p′, σ′) ∧ (p′, ς)

B
99K (p′′, ς ′)⇒ p′ ≡ p′′

The next property relates variable and guard trajectories, and valuations. We
want the domain of the trajectories to be closed intervals, that the valuation in the
initial state coincides with the initial valuation of variables at time 0, as given by
the variable trajectory, and similarly, that the valuation in the final state is the same
as the valuation of variables at the end time of the delay. This is formalized by the
following property.

Property 4 (Trajectories and valuations). For all p, p′, σ, σ′, ρ, A, and θ we have:

(p, σ)
ρ,A,θ7−→ (p′, σ′)⇒ 〈∃t :: dom(ρ) = [0, t] = dom(θ) ∧ ρ(0) = σ ∧ ρ(t) = σ′〉
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Using the definitions of trajectory prefix and postfix, we can specify the prop-
erties of prefix closure and postfix closure for time transitions. Prefix closure states
that if a time delay is possible, then it is possible to take a shorter time delay.
Postfix closure states that the last part of a delay is also a valid delay in the system.

The properties of prefix and postfix closure give an intuitive meaning to time
delays. A consequence of these properties is that a time delay can be split in as
many parts as desired, yielding the same behavior as the one obtained if the whole
delay was made. These properties are formalized below.

Property 5 (Prefix closure). For all p, p′, σ, σ′, ρ, A, θ, and for all time points
s, t ∈ T, such that dom(ρ) = [0, t], 0 < s, and s ≤ t, we have that for some σ′′:

(p, σ)
ρ,A,θ7−→ (p′, σ′)⇒ (p, σ)

ρ≤s,A,θ≤s7−→ (p′, σ′′)

Property 6 (Postfix closure). For all p, p′, σ, σ′, ρ, A, θ, and for all time points
s, t ∈ T, such that dom(ρ) = [0, t] and s ≤ t, we have that for some σ′′:

(p, σ)
ρ,A,θ7−→ (p′, σ′)⇒ (p′, σ′′)

ρ≥s,A,θ≥s7−→ (p′, σ′)

Another property we are interested in is the property of state [64]. This prop-
erty models the idea that the state of system contains all the relevant information
about the past of a system, and thus future flows only depend on the current val-
uation. Using the definition of flow concatenation, it is possible to express the
property of state.

Property 7 (State). For all p, p′, p′′, ρ, ρ′, A, θ, θ′, such that dom(ρ) = [0, t] and
dom(ρ′) = [0, t′] and ρ(t) = ρ′(0) we have that:

(p, ρ(0))
ρ,A,θ7−→ (p′, ρ(t)) ∧ (p′, ρ′(0))

ρ′,A,θ′7−→ (p′′, ρ′(t′))⇒
(p, ρ(0))

(ρ·tρ′),A,θ·tθ′7−→ (p′′, ρ′(t′))

7.3. Properties of the operators
This section presents properties of the CIF operators, which provide additional

validation of the semantics. These properties not only enable algebraic reasoning,
but are also important for rewriting CIF models to normal forms that are more
suitable for a specific purpose. For instance, the commutativity of variable scope
(Property 14) allow us to push all the scoping operators to the outermost level, and
this simplifies the linearization of CIF models, or its symbolic treatment. Note that
it is not our intention to provide a sound and complete axiomatization of all the
properties of CIF models.

We want the parallel composition to be commutative, and associative, since
these are well know properties from literature [65], and essential for algebraic rea-
soning.
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Property 8 (Properties of parallel composition). For all p, q, and r the following
equivalences hold:

p ‖ q ↔ q ‖ p
(p ‖ q) ‖ r ↔ p ‖ (q ‖ r)

In general, synchronization, urgency, control variable, and scope operators do
not distribute over parallel composition. For the remaining operators we have the
distributivity laws enunciated in the next property.

Property 9 (Distributivity of operators wrt. parallel composition). For all u, x, p,
q, and G, the following equivalences hold:

Dx:G(p) ‖ q ↔ Dx:G(p ‖ q)
(u� p) ‖ q ↔ u� (p ‖ q)

Some CIF operators can be exchanged in a model without altering its behavior.
The commutativity properties of the CIF operators are summarized in Table 2. A 0
in the position (f, g) indicates that the two operators are not commutative, whereas
a 1 indicates that the operators are, i.e.:

f(g(p))↔ g(f(p))

for all compositions p. For instance, declaring first a as synchronizing, and then
b, in a composition p, delivers a bisimilar composition to the one where first b is
declared as synchronizing, and then a.

Property 10 (Commutativity among CIF operators). For all a, a′, u, u′, x, and x′,
the commutativity laws shown in Table 2 hold for any composition p.

γa(_) u� _ |[V x :: _ ]| |[A a :: _ ]| υa(_) Dx(_) ctrlx(_)

γa′(_) 1 1 1 0 1 1 1
u′ � _ 1 1 0 1 1 1 1
|[V x′ :: _ ]| 1 0 0 1 1 0 0
|[A a′ :: _ ]| 0 1 1 1 0 1 1
υa′(_) 1 1 1 0 1 1 1
Dx′(_) 1 1 0 1 1 1 1

ctrlx′(_) 1 1 0 1 1 1 1

Table 2: Commutativity among different CIF operators.

All CIF operators but parallel composition and variable scope have the closure
property, which states that applying an operator f twice to a composition p has the
same effect as applying it once.
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Property 11 (Closure of CIF operators). For all a, u, x, G, and p the following
bisimilarity holds:

f(f(p))↔ f(p)

where f ∈ {γa(_), u� _, |[A a :: _ ]|,υa(_),Dx:G(_), ctrlx(_)}.

Note that closure of variable scope operator does not hold in general. The
validity of the equivalence

|[V x = e0, ẋ = e1 :: |[V x = e0, ẋ = e1 :: p ]|]| ↔ |[V x = e0, ẋ = e1 :: p ]|

is guaranteed only if x and ẋ do not occur free in expressions e0 and e1.
An important property of the initialization operator is that all the predicates are

taken into account at the same time when initializing a CIF composition. In other
words, we want the initialization operator to restrict only the initial state of a given
system. If this is the case, then all the conjunction of all initialization predicates can
be pushed to the outermost level. The following property, together with Properties
9 and 10 are crucial for achieving this.

Property 12 (Conjunction of initializations). For all u, v, and p the following
equivalence holds:

u� (v � p) ↔ (u ∧ v)� p

The dynamic type operator has some interesting properties. The first one of
them states that the dynamic type constraints in a composition are cumulative. This
is, if in a composition the dynamic behavior of certain variable x is constrained by
dynamic types G0 and G1, then variable x is constrained by the intersection of
these two types. This, together with Property 9, allows us to infer that dynamic
type constraints in one component of the parallel composition also affect the other
component behavior. This is formalized below.

Property 13 (Properties of dynamic types). For all x, G0, G1, and p the following
equivalence holds:

Dx:G0(Dx:G1(p)) ↔ Dx:G0∩G1(p)

The properties of the dynamic type operator ensure that, as with the initializa-
tion operator, all dynamic types in a composition are considered simultaneously in
a time delay. In other words, dynamic types can be pushed to the outermost level of
a parallel composition using intersection. Another consequence the property stated
above is that if a variable is declared both as continuous and discrete in a certain
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composition, then the most restrictive dynamic type (discrete) will be taken into
account.

The variable scope operator has several distributivity properties with regard
to the different CIF operators. Together, they state that the variable scope oper-
ators of a composition can be pushed to the outermost level by using renaming,
which captures the intuition behind variable declarations. Given an expression
e, and variables xi, yi, 0 ≤ i ≤ N , for some positive constant N , expression
e[y0, . . . , yn−1/x0, . . . xn−1] is the result of replacing all occurrences of variable
xi by yi in expression e.

Property 14 (Commutativity of variable scope). Let y and ẏ be variables that do
not appear in the set of free variables of expressions e0 and e1, compositions p,
and q, and predicate u, such that y 6= z, then the following equivalences hold:

|[V x = e0, ẋ = e1 :: p ]|‖ q↔
|[V (x = e0, ẋ = e1)[y, ẏ/x, ẋ] :: p[y, ẏ/x, ẋ] ‖ q ]|

u� |[V x = e0, ẋ = e1 :: p ]| ↔
|[V (x = e0, ẋ = e1)[y, ẏ/x, ẋ] :: u� p[y, ẏ/x, ẋ] ]|

Dz:G(|[V x = e0, ẋ = e1 :: p ]|)↔
|[V (x = e0, ẋ = e1)[y, ẏ/x, ẋ] :: Dz:G(p[y, ẏ/x, ẋ]) ]|

ctrlz(|[V x = e0, ẋ = e1 :: p ]|)↔
|[V (x = e0, ẋ = e1)[y, ẏ/x, ẋ] :: ctrlz(p[y, ẏ/x, ẋ]) ]|

A similar property holds for action scopes.

Property 15 (Commutativity of action scope). For all compositions p and q, and
for all variables a, b, and c, such that c does not appear in the set of free variables
of compositions p and q, and a 6= c, the following bisimilarities hold:

|[A b :: p ]|‖ q↔ |[A c :: p[c/b] ‖ q ]|
υa(|[A b :: p ]|)↔ |[A c :: υa(p[c/b]) ]|
γa(|[A b :: p ]|)↔ |[A c :: γa(p[c/b]) ]|

8. Examples

We illustrate CIF by means of two examples. In Section 8.1, we present a
model of unmanned underwater and aerial vehicles, to show how different forms
of communication can be achieved in CIF. In Section 8.2, the use of urgency is
explained using a simple producer-consumer model.

In the remainder of this section we use the following conventions:
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• Graphically, the sets of synchronizing actions, control variables, and dy-
namic type mapping of an automaton are declared in a rectangle, above
the top-right corner of the rectangle that encloses the picture of the au-
tomaton (see Figure 34). The set of control variables is specified using
the control keyword. The set of synchronizing actions is specified us-
ing the sync keyword. The dynamic type of a variable is specified us-
ing three different keywords: disc, clock, and cont. In the examples
that follow, we associate a dynamic type to the model variables only at the
top level composition (for instance Figure 38). If there is a dynamic type
declaration in the automaton we assume the variable to be local. For lo-
cal variables, the dynamic type and the control variable declarations can
be combined. According to the conventions previously mentioned, for
the automaton of Figure 34 we have: varC = {x, c, z}, actS = {a, b},
dtype = {(y,Gdisc), (c,Gclock ), (z,Gcont)}. Moreover, we assume au-
tomaton AutName to be enclosed by variable scope operators that declare
variables y, c, and z as local.

• To keep the models concise, we omit the set of jumping variables, and we
assume it to be all the step variables controlled by the automaton that appear
in the update predicate. For instance, assume only variables x and z are
controlled in automaton α. Then we write

when g act a do x+ = y+ + y + z+

instead of

when g act a do ({x, z}, x+ = y+ + y + z+).

• When passing data using synchronizing actions and shared variables, we use
channel notation to distinguish the sender (h ! e) and the receiver (h ? x).
Thus we make use of the following definitions:

act h ! e do r , act h do v+
h = e ∧ r

act h ? x do r , act h do v+
h = x+ ∧ r

where we assume a variable vh is declared for each action h.

8.1. Unmanned underwater and aerial vehicles
In this example, we want to model the communication between aerial vehicles

(AV), underwater vehicles (UV), and a command center (CC). The command center
generates commands that are to be transmitted to the underwater vehicles by the
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AutName

control : x;
disc : y;
clock control : c;
cont control : z;
sync : a, b;

Figure 34: Automaton with declarations.

aerial vehicle. Every underwater vehicle waits for a command to carry out. Once
it receives it, it submerges and executes the task.

Each command is addressed to a specific underwater vehicle, which is identi-
fied by a unique id. We assume the aerial vehicle flies along a straight line, looking
for the corresponding underwater vehicle. The command center is located at posi-
tion 0, andN is the maximum distance the AV can be away from the control center.
Communication between the aerial vehicle and an underwater vehicle is successful
if they are at most R units of distance away from each other, and the underwater
vehicle is on the water surface.

Figure 35 shows the model of the command center. Initially it is in the Ready
state, and sends an order to the aerial vehicle, which in turn will pass it to a specific
underwater vehicle. After sending, the command center waits for a reply from the
aerial vehicle that conveys information about the success of the command. In this
model, an order is abstracted as the recipient’s id (0, 1, or 2).

Ready Waiting

when x ∈ {0, 1, 2} act c2a ! x

act a2c ? r

CC

disc control : r
sync : a2c, c2a

Figure 35: Command center.

The model of the aerial vehicle is depicted in Figure 36. The aerial vehicle
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is initially at position 0, waiting for an order from the command center. After re-
ceiving the order, the vehicle starts searching for an underwater vehicle to pass the
order to. Variable xav represents the vehicle position along the surface of the wa-
ter. In the Searching position the rate of change of xav is determined by variable v.
Since xav is controlled by the AV , no other process can change its value. Variable
xprev records the last position where the AV tried to establish a communication.
Every ∆ units of distance, a message is broadcast using the action a2v, after which
the AV waits Tw time units for an acknowledge message. If an acknowledge is re-
ceived the AV returns to position 0 and notifies the control center of the successful
delivery. Otherwise the AV continues flying ∆ units away from the last point it
tried to send the command, and the procedure is repeated again. If the vehicle has
flown beyond the search limits (N ≤ xav), then it starts flying back to position 0
while still searching for the corresponding UV .

atCC
inv : xav = 0

Searching
inv : ẋav = v

Waiting
inv : ẋav = 0

Returning
inv : ẋav = −1

act c2a ? r do v+ = 1 ∧ xprev
+ = 0

when N ≤ xav do v+ = −v

when v ≤ 0 act a2c ! fail

when ∆ ≤ |xav − xprev|
act a2u ! r do c+ = 0

when Tw ≤ c do
xprev

+ = xav

act ack

act a2c ! sucess

AV

disc control : xprev, r, v;
clock control : c;
control : xav;
sync : a2c, c2a, a2u, ack ;

Figure 36: Aerial vehicle.
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Figure 37 models the behavior of the underwater vehicles. Initially, each ve-
hicle is at some random position on the water surface. It waits for an order of the
AV . If the order is addressed to the recipient of the message, then it sends an ac-
knowledge message, and it submerges to carry out the task. Otherwise the vehicle
does not reply. Each command takes at least M time units to be executed. After
that time has elapsed the vehicle can surface, or it can continue submerged at most
G time units more (then it must surface). These conditions are enforced by putting
a guard on action surface, and a tcp predicate in location Submerged . Upon com-
pletion of a command, the UV emerges at an unspecified position. The guard of
the self-loop at location OnSurface represents the situation in which a message
from the AV is not received, since the distance between sender and receiver is too
long. Similarly, the self-loop at the Submerged location models the fact that the
message from the AV is dropped. These self-loops are necessary to prevent the
AV from blocking on a broadcast message using action a2u .

The models presented above are composed as shown in Figure 38. Here two
different forms of communications are used. Actions a2c, c2a , and ack are used
to implement point to point channels. Action a2u , on the other hand, is used
to implement broadcast communication from the aerial vehicle to the underwater
vehicles.

8.2. Producer-consumer

The illustration presented in this section is intended to show how the urgency
operator can be used to obtain both patient and impatient synchronization [66].
The difference between these forms of synchronization can be understood only
in the context of parallel composition. Informally, a composition p that wants to
synchronize in a patient action a, waits for the other components to be ready to
execute this action, and in this way, p allows time delays. On the other hand, a
component that wants to synchronize on an impatient action a does not wait for the
other partners to be ready, and disables the passage of time. We give an example
of this next.

Consider a producer that sends products to a buffer, and a consumer that re-
trieves the contents from the buffer. The processes operate at different rates, and
situations can arise where the producer cannot place its product in the buffer be-
cause it is full, or the consumer finds the buffer empty. In this example we analyze
the first situation.

There are cases where a producer not being able to send a product is not critical,
for instance a video streaming protocol in which frames can be dropped. In this
case, we may be interested in the average amount of dropped packages. If we are
to model such systems, then patient synchronization is useful.
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OnSurface
inv : 0 ≤ xuv ≤ N

Checking

Submerged
tcp : c < M +G

when R < |xuv − xav |
act a2u

act a2u

when |xuv − xav | ≤ R
act a2u ? r

when r 6= i when r = i
act ack do c+ = 0

when M ≤ c act surface
do 0 ≤ x+

uv ≤ N

UVi

disc control : r;
clock control : c
cont control : xuv;
sync : a2u;

Figure 37: Underwater vehicle.

CC ‖ AV ‖ γ{ack}(UV0 ‖ UV1 ‖ UV2 )

UAV

cont : xav;
urgent : a2c, c2a, a2u, u2a, ack, τ ;

Figure 38: Top level model: unmanned underwater and aerial vehicles.

In other cases, the scenario where the producer is not able send its product
should not occur. For instance, a delayed signal in a car control system may cause
a serious failure in the system. In this case, it is possible to model this requirement
by means of impatient synchronization.

First, we make an high-level model of a simple producer-consumer protocol,
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where it is possible for a producer to miss its deadline. Next we turn our attention
to the case where such a failure cannot be tolerated.

Figure 39 shows the model of the producer. It requires T time units to have a
product ready. The model of the buffer is shown in Figure 40. The buffer has a

c = 0

when T ≤ c act p2b ! product do c+ = 0

P

disc control : c;
sync : p2b

Figure 39: Model of the producer.

capacity N . It can receive a product if it is not at the limit of its storing capacity,
and similarly it can send a product if it is not empty. Received products are stored
in the list xs . Given a list xs , #(xs) returns the length of xs , head(xs) returns the
first element of xs , tail(xs) is the list that results from removing the first element
from xs , and xs ++ ys is the list that is obtained after appending ys to the end of
xs .

xs = [ ]

when #(xs) < N act p2b ? x do xs+ = xs ++ [x+]

when 0 < #(xs) act b2c ! head(xs) do xs+ = tail(xs)

B

disc control : xs, x;
sync : p2b, b2c

Figure 40: Model of the buffer with capacity N .

If an undelivered product is not considered a critical failure, then we can com-
pose the models of the producer, consumer, and buffer as shown in Figure 41,
where the model of the consumer is omitted since it is not relevant for our discus-
sion. Here, since action p2b is urgent in the parallel composition, this means that
time can progress up to the point where condition T ≤ c ∧#(xs) < N holds. We
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could have also used the tcp predicate to achieve the same behavior, however for
the urgent action p2b, the use of the operator is more convenient since otherwise
it is necessary to modify the tcp predicates of the producer and consumer, in a
non-compositional way.

υp2b(P ‖ B ‖ C)

PCpatient

Figure 41: Producer-consumer: patient synchronization.

If we consider a model where the producer always has to meet its deadline,
then we can use impatient synchronization. This can be modeled in CIF as shown
in Figure 42. Here, the urgency condition becomes T ≤ c, and if synchronizing
action p2b cannot take place by the time it is satisfied, then no further time delays
are possible (which could lead to a deadlock if the buffer is full and the consumer
cannot take a product out of the buffer without any time delays).

υp2b(P ) ‖ B ‖ C

PCimpatient

Figure 42: Producer-consumer: impatient synchronization.

9. Conclusions

We have presented the formal definition of a compositional interchange format
for hybrid systems. This definition is given in terms of SOS rules, which allow us
to prove compositionality of the operators of the language. The semantics is given
in such a way that it is independent of implementation concepts, and it is validated
by proving axiomatic properties.

CIF features operators which define concepts in an orthogonal way. These
operators can be combined to model various aspects of discrete-event, timed and
hybrid systems. For instance, the example of the unmanned vehicles shows how
different forms of communication can be achieved in CIF using a single operator.
Similarly, the producer-consumer example shows how the combination of the ur-
gency operator and the synchronization operator can be used to implement patient
and impatient synchronization.

The use of structured operational semantics in the definition of CIF plays an
essential role in the proofs of compositionality, and at the same time it gives a
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straightforward semantics to the language. We have derived a simulator from this
SOS specification, which shows the usefulness of the framework for practical ap-
plications [46].

In recent work [6], CIF was extended with hierarchy, which adds more flexibil-
ity to the language. The preservation of the properties presented in this work still
needs to be shown for hierarchical CIF.

Based on the formal specification of the language, several semantic preserving
transformations to and from CIF [25, 21] have already been defined. As future
work, we plan to define additional semantic preserving transformations between
CIF and other formalisms, in particular, between CIF and hybrid automata.

The implementation of different forms of synchronization by means of a paral-
lel composition operator is dealt with in [67]. In that work, the authors distinguish
between synchronous (active) and asynchronous (passive) actions. Such a distinc-
tion is useful in the context of supervisory control theory. Furthermore, the authors
consider an operator for restricting the scope of the interaction, using an action
scope operator similar to the one presented in Section 5.9; and they consider the
possibility of multi-way synchronization. Unlike the parallel composition opera-
tor in [67], we do not embed synchronization information in it. Synchronization
is achieved by means of the synchronizing action operator. As a result, we do
not need conditions to guarantee commutativity, and associativity of the parallel
composition operator, as shown in Section 7.3. Point to point or multi-way syn-
chronization can be obtained by changing the application order of the operator,
instead of using a set of actions in the parallel composition operator. We believe
this yields a simpler semantics, without shifting the complexity of synchronization
considerations to the parallel composition operator. However, our synchronization
operator is more limited since all the actions are active (synchronous), or they do
not synchronize at all. We acknowledge the importance of the distinction between
active and passive actions. The theoretical extension of CIF for its use in the con-
text of supervisory control is something that we regard as future work.
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Appendix A. Proofs of the hybrid transition systems properties

Proof of Property 1.
The property that for all p, p′, σ, σ′, and A we have:

(p, σ)
A
99K (p′, σ′)⇒ σ |= p ∧ σ′ |= p′

can be easily proved by structural induction on the CIF compositions, using the
definition of consistency (Definition 7), and the rules for environment transition.
This is shown below.

Basis. This case follows directly from Rule 3 and definition of consistency (Defi-
nition 7).

Induction step. We do a case analysis depending on the structure of composition
p.

Parallel composition Let p ≡ q ‖ r. Assume:

(q ‖ r, σ)
A
99K (q′ ‖ r′, σ)

Inspecting a the environment rules for parallel composition, we have that only
Rule 8 could be applied to obtain this transition. Then we have:

A ≡ Aq ∪Ar

(q, σ)
Aq
99K (q′, σ′)

(r, σ)
Ar
99K (r′, σ′)

By induction hypothesis we get:

σ |= q and σ′ |= q′

σ |= r and σ′ |= r′

And by definition of consistency we get:

σ |= q ‖ r and σ |= q′ ‖ r′
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Variable scope Let p ≡ |[V x = e0, ẋ = e1 :: q ]|. Assume:

(|[V x = e0, ẋ = e1 :: q ]|, σ)
A
99K (|[V x = d′0, ẋ = d′1 :: q′ ]|, σ′)

By inspecting at the environment rules for variable scope, we know that Rule 26
was applied to obtain the transition above. Thus we have that for some d0, d1:

(σ |= e0 = d0) ∨ e0 = ⊥
(σ |= e1 = d1) ∨ e1 = ⊥

(q, {x 7→ d0, ẋ 7→ d1} � σ)
A
99K (q′, {x 7→ d′0, ẋ 7→ d′1} � σ′) (A.1)

By induction hypothesis we know that:

{x 7→ d0, ẋ 7→ d1} � σ |= q

{x 7→ d′0, ẋ 7→ d′1} � σ′ |= q′ (A.2)

By (A.1) and (A.2), and definition of consistency (Definition 7) we get:

σ |= |[V x = e0, ẋ = e1 :: q ]| and σ′ |= |[V x = d′0, ẋ = d′1 :: q′ ]|

which concludes the proof for this case.
The proofs remaining cases can be obtained straightforwardly in a similar man-

ner.

Proof of Property 2. The proof of this property is straightforward, since the defi-
nition of the set of synchronizing actions of a composition (Definition 11) is anal-
ogous to the construction of the set of synchronizing actions in the labels of the
environment transitions.

Proof of Property 3. The proof goes via structural induction on the CIF composi-
tions.

Basis The composition at the target state of an environment transition for an au-
tomaton has the form:

p′ ≡ (V, idv, inv, tcp, E, varC , actS ,dtype)

since idv evaluates to true only for location v, by looking at the rule for
environment transitions of automata (Rule 3), the only possible outgoing
transitions from state

(p′, σ)

has p′ as the only possible composition at the destination state, which con-
cludes the proof for this case.
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Induction For the parallel composition case, assume p ≡ q ‖ r, and that there are
two environment transitions:

(q ‖ r, σ)
A
99K (q′ ‖ r′, σ′) and (q′ ‖ r′, ς) B

99K (q′′ ‖ r′′, ς ′)

By using the rule for environment transitions of parallel composition
(Rule 8), and induction hypothesis we get:

p′ ≡ p′′ and q′ ≡ q′′

and the result follows from the definition of syntactic equivalence.

For the variable scope case we note that if e0 and e1 are values, then e0 and
e1 evaluate to itself, and we have:

(|[V x = e0, ẋ = e1 :: p ]|, σ)
A
99K (|[V x = e0, ẋ = e1 :: p′ ]|, σ′)

for all σ, σ′. Then we can apply the same strategy we used for the parallel
composition case.

The cases for the remaining operators are easy to prove in a similar way.

Proof of Property 4. The property can be easily proved by structural induction,
and it follows from the time rule for automata, and the fact that the operations on
trajectories (such as ∪) do not alter their domain.

Basis. Let p ≡ (V, init, inv, tcp, E, varC , actS , dtype). Assume:

(p, σ)
ρ,A,θ7−→ (p′, σ′)

By inspecting at the time rules for automata, we have that only Rule 2 can be
applied to obtain the transition above, thus we get that for some t:

dom(ρ) = [0, t] = dom(θ)

σ = ρ(0) and σ′ = ρ(t)

which is what we wanted to prove.

Induction step. We do a case analysis depending on the structure of composition
p.
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Parallel composition Let p ≡ q ‖ r. Assume:

(p, σ)
ρ,A,θ7−→ (p′, σ′)

By inspecting at the time rules for parallel composition, we have that necessar-
ily Rule 7 was applied last, thus for some Aq, Ar, θq, θr:

A ≡ Aq ∪Ar
θ ≡ (θq ∩ θr) ∪ (θq \Ar) ∪ (θr \Aq)

(q, σ)
ρ,Aq ,θq7−→ (q′, σ′) and (r, σ)

ρ,Ar,θr7−→ (r′, σ′)

By induction hypothesis, we know that for some t:

dom(ρ) = [0, t] = dom(θq)

ρ(0) = σ and ρ(t) = σ′

Also using induction hypothesis, we know that for some t′:

dom(ρ) = [0, t′] = dom(θr)

ρ(0) = σ and ρ(t′) = σ′

Then using predicate calculus, we have that necessarily t = t′, and since the
operators ∩, \, and ∪ do not change the trajectories on which they operate, we
have:

dom(θ) = [0, t]

which concludes the proof for this case.

Variable scope and urgency case These cases are similar to the previous
case. They follow by applying induction hypothesis, inspecting at the correspond-
ing rules, and the fact that the overwriting and the set difference (\) operators do
not change their operands’ domain.

The remaining cases are straightforward to prove using induction hypothesis,
since the labels of the time transitions are propagated unaltered from the premises
to the conclusions.

Proof of Prop 5. The proof goes via structural induction.

Base Case Assume:

((V, init, inv, tcp, E, varC , actS , dtype), ρ(0))
ρ,actS ,θ7−→

((V, idv, inv, tcp, E, varC , actS , dtype), ρ(t))
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By inspecting the time rule for automata we know that:

dom(ρ) = [0, t ], 0 < t , dom(ρ) = dom(θ), ρ(0) |= init(v),

〈∀s : s ∈ dom(θ) : θ(s) = {a|(v, g, a, u, v′) ∈ E ∧ ρ(s) |= g}〉,
〈∀s : s ∈ [0, t] : ρ(s) |= inv(v)〉, 〈∀s : s ∈ [0, t) : ρ(s) |= tcp(v)〉,
〈∀x : x ∈ dom(dtype) : (ρx, ρẋ) ∈ dtype(x)〉

Using predicate calculus, the definition of the trajectory prefix operator, and
the fact that

(ρx, ρẋ) ∈ G⇒ (ρ≤sx , ρ≤sẋ ) ∈ G

for all dynamic typesG and for all s such that 0 < s, we arrive to the desired
result.

Inductive Step

Variable Scope Assume:

(|[V x = e0, ẋ = e1 :: p ]|, ρ(0))
ρ,A,θ7−→ (|[V x = d′0, ẋ = d′1 :: p′ ]|, ρ(t))

Then, inspecting the rule for variable scope we know that:

(σ |= e0 = d0) ∨ e0 = ⊥, (σ |= e1 = d1) ∨ e1 = ⊥,

(p, {x 7→ d0, ẋ 7→ d1} � σ)
{x 7→f0,ẋ 7→f1}�ρ,A,θ7−→

(p′, {x 7→ d′0, ẋ 7→ d′1} � σ′)

By induction hypothesis we get:

(p, {x 7→ d0, ẋ 7→ d1} � σ)
({x 7→f0,ẋ 7→f1}�ρ)≤s,A,θ≤s7−→

(p′, {x 7→ d′′0, ẋ 7→ d′′1} � σ′′)

Using the definition of trajectory prefix, the fact that

({x 7→ f0, ẋ 7→ f1} � ρ)≤s = ({x 7→ f0, ẋ 7→ f1})≤s � ρ≤s

and the rule for variable scope we obtain:

(|[V x = e0, ẋ = e1 :: p ]|, ρ(0))
ρ≤s,A,θ≤s7−→

(|[V x = d′′0, ẋ = d′′1 :: p′ ]|, ρ≤s(s))
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Other Cases The proof for the remaining operators is straightforward using
the SOS rules for time. Only for the dynamic type operator we need
the property that:

(ρx, ρẋ) ∈ G⇒ (ρ≤sx , ρ≤sẋ ) ∈ G

for all dynamic types G and for all s such that 0 < s.

Proof of Property 6. The proof is analogous to the proof of Property 5. In this case
we need to use the fact that:

(ρx, ρẋ) ∈ G⇒ (ρ≥sx , ρ≥sẋ ) ∈ G

for all dynamic types G and for all s such that s < t.

Proof of Property 7. The proof goes via structural induction on the CIF composi-
tions.

Basis Assume p ≡ (V, init, inv, tcp, E, varC , actS ,dtype), and assume:

(p, σ)
ρ,A,θ7−→ (p′, σ′) and (p′, σ′)

ρ′,A,θ′7−→ (p′′, σ′′)

Then, inspecting the time rule for automata we know that there must be some
v ∈ V , such that the following conditions hold:

dom(ρ) = [0, t ] = dom(θ), 0 < t

ρ(0) |= init(v)

〈∀s : s ∈ dom(θ) : θ(s) = {a|(v, g, a, u, v′) ∈ E ∧ ρ(s) |= g}〉
〈∀s : s ∈ [0, t] : ρ(s) |= inv(v)〉, 〈∀s : s ∈ [0, t) : ρ(s) |= tcp(v)〉
〈∀x : x ∈ dom(dtype) : (ρx, ρẋ) ∈ dtype(x)〉
dom(ρ′) = [0, t ′] = dom(θ′), 0 < t ′

ρ′(0) |= idv(v)

〈∀s : s ∈ dom(θ′) : θ′(s) = {a|(v, g, a, u, v′) ∈ E ∧ ρ′(s) |= g}〉
〈∀s : s ∈ [0, t′] : ρ′(s) |= inv(v)〉, 〈∀s : s ∈ [0, t′) : ρ′(s) |= tcp(v)〉
〈∀x : x ∈ dom(dtype) : (ρ′x, ρ

′
ẋ) ∈ dtype(x)〉

σ′ = ρ(t) = ρ′(0)

ρ′(t) = σ′′
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Using the previous facts, the fact that ρ(t) = ρ′(0), the definition of the
concatenation operator for flows, predicate calculus, and algebra, we get that
the following conditions hold.

dom(ρ ·t ρ′) = [0, t+ t′] = dom(θ ·t θ′), 0 < t + t ′

(ρ ·t ρ′)(0) |= init(v)

〈∀s : s ∈ dom(θ ·t θ′) : (θ ·t θ′)(s) = {a | (v, g, a, u, v′) ∈ E ∧ (ρ ·t ρ′)(s) |= g}〉
〈∀s : s ∈ [0, t] : (ρ ·t ρ′)(s) |= inv(v)〉, 〈∀s : s ∈ [0, t) : (ρ ·t ρ′)(s) |= tcp(v)〉

Using the property of dynamic types and the concatenation operator we also
obtain

〈∀x : x ∈ dom(dtype) : ((ρ ·t ρ′)x, (ρ ·t ρ′)ẋ) ∈ dtype(x)〉

Then, using the time rule for automata we conclude that there is a time tran-
sition:

(p, σ)
ρ·tρ′,A,θ·tθ′7−→ (p′′, σ′′)

which concludes the proof for this case.

Inductive Step For the parallel composition case assume there are two time tran-
sitions

(p ‖ q, σ)
ρ,Ap∪Aq ,(θp∩θq)∪(θp\Aq)∪(θq\Ap)7−→ (p′ ‖ q′, σ′)

(p′ ‖ q′, σ′)
ρ′,Ap∪Aq ,(θ′p∩θ′q)∪(θ′p\Aq)∪(θ′q\Ap)

7−→ (p′′ ‖ q′′, σ′′)

By inspecting the rules for parallel composition, and using induction hypoth-
esis we get that there are two time transitions:

(p, σ)
ρ·tρ′,A,θp·tθ′p7−→ (p′′, σ′′)

(q, σ)
ρ·tρ′,A,θq ·tθ′q7−→ (q′′, σ′′)

Using the time rule for parallel composition we get that there is a transition:

(p ‖ q, σ)
ρ·tρ′,A,((θp·tθ′p)∩(θq ·tθ′q))∪((θp·tθ′p)\Aq)∪((θq ·tθ′q)\Ap)

7−→ (p′′ ‖ q′′, σ′′)

Using the definition of the flow concatenation operator it is easy to show
that:

((θp ·t θ′p) ∩ (θq ·t θ′q)) ∪ ((θp ·t θ′p) \Aq) ∪ ((θq ·t θ′q) \Ap) =

((θp ∩ θq) ∪ (θp \Aq) ∪ (θq \Ap)) ·t ((θ′p ∩ θ′q) ∪ (θ′p \Aq) ∪ (θ′q \Ap))
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which concludes the proof for the parallel composition case.

The urgency operator case can be proved using the fact that:

〈∀s : s ∈ [0, t) : a /∈ θ(s)〉 ∧ 〈∀s : s ∈ [0, t′) : a /∈ θ′(s)〉 ⇒
〈∀s : s ∈ [0, t+ t′) : a /∈ (θ ·t θ′)(s)〉

For all θ, θ′, such that dom(θ) = [0, t], dom(θ′) = [0, t′], and θ(t) = θ′(0).

The dynamic type case can be proved using the property of dynamic types
and the concatenation operator.

For the variable scope case, assume there are two time transitions:

(|[V x = d0, ẋ = d1 :: p ]|, ρ(0))
ρ,A,θ7−→ (|[V x = d′0, ẋ = d′1 :: p′ ]|, ρ(t)) and

(|[V x = d′0, ẋ = d′1 :: p′ ]|, ρ′(0))
ρ′,A,θ′7−→ (|[V x = d′′0, ẋ = d′′1 :: p′′ ]|, ρ′(t′))

where to simplify the details of the proof we assume d0, d1 are values (the
proof can be easily extended to the case when local variables are initialized
using expressions).

Using the rule for variable scope, we know that there are two time transitions:

(p, {x 7→ d0, ẋ 7→ d1} � σ)
{x 7→f0,ẋ 7→f1}�ρ,A,θ7−→

(p′, {x 7→ d′0, ẋ 7→ d′1} � σ′) and

(p′, {x 7→ d′0, ẋ 7→ d′1} � σ′)
{x 7→g0,ẋ7→g1}�ρ′,A,θ′7−→

(p′′, {x 7→ d′′0, ẋ 7→ d′′1} � σ′′)

Using Property 4 we know that

({x 7→ f0, ẋ 7→ f1} � ρ)(t) = {x 7→ d0, ẋ 7→ d1} � σ =

({x 7→ g0, ẋ 7→ g1} � ρ′)(0)

then we can apply induction hypothesis to obtain a transition:

(p, {x 7→ d0, ẋ 7→ d1} � σ)
({x7→f0,ẋ 7→f1}�ρ)·t({x7→g0,ẋ 7→g1}�ρ′),A,θ·tθ′7−→

(p′′, {x 7→ d′′0, ẋ 7→ d′′1} � σ′′)

Using the definition of the flow concatenation operator it is possible to prove
that:

({x 7→ f0, ẋ 7→ f1} � ρ) ·t ({x 7→ g0, ẋ 7→ g1} � ρ′) =

{x 7→ f0 ·t g0, ẋ 7→ f1 ·t g1} � ρ ·t ρ′
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Then using the time rule for variable scope we arrive to the desired result,
which concludes the proof for this case.

For the remaining operators the proof is straightforward.

Appendix B. Proof of the CIF operators properties

Proof of Property 8. First we show that parallel composition is commutative. To
this end, we show that the relation

R , {(p ‖ q, q ‖ p) | p ∈ C, q ∈ C}

is a witness of the bisimulation.
Given a transition of the form:

(p ‖ q, σ)
a,b,X−−−→ (p′ ‖ q′, σ′) (B.1)

the fact that there is a corresponding transition

(q ‖ p, σ)
a,b,X−−−→ (q′ ‖ p′, σ′)

can be inferred by swapping the premises and using the rule for synchronizing
parallel composition, or using the symmetric rule of the interleaving rule that orig-
inated transition (B.1).

For time and environment transitions, the symmetric version of these transi-
tions can be obtained by inverting the order of the premises that originated them,
and using the fact that the operators ∩ and ∪ are commutative.

To show that parallel composition is associative, we prove that the relation

R , {((p ‖ q) ‖ r, p ‖ (q ‖ r)) | p ∈ C, q ∈ C, r ∈ C}

is a witness of the bisimulation.
Given an action transition of the form:

((p ‖ q) ‖ r, σ)
a,b,X−−−→ ((p′ ‖ q′) ‖ r′, σ′)

the existence of a transition

(p ‖ (q ‖ r), σ′) a,b,X−−−→ (p′ ‖ (q′ ‖ r′), σ′)

can be inferred by inspecting the rules for parallel composition, and grouping the
premises in a different order.
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Given a time transition of the form:

((p ‖ q) ‖ r, σ)
ρ,A,θ7−→ ((p′ ‖ q′) ‖ r′, σ′)

the existence of a transition

(p ‖ (q ‖ r), σ′) ρ,A,θ7−→ (p′ ‖ (q′ ‖ r′), σ′)

follows from the associativity of ∪, and the fact that for all guard trajectories θi
and sets of actions Ai, i ∈ {p, q, r}, the following equality holds:

(θp ∩ ((θq ∩ θr) ∪ (θq \Ar) ∪ (θr \Aq))) ∪
(θp \ (Aq ∪Ar)) ∪
(((θq ∩ θr) ∪ (θq \Ar) ∪ (θr \Aq)) \Ap)

=

(((θp ∩ θq) ∪ (θp \Aq) ∪ (θq \Ap)) ∩ θr) ∪
(((θp ∩ θq) ∪ (θp \Aq) ∪ (θq \Ap)) \Ar) ∪
(θr \ (Ap ∪Aq))

Finally the transfer condition for environment transitions holds due to the as-
sociativity property of ∪.

Proof of Property 9. To prove that

Dx:G(p) ‖ q↔ Dx:G(p ‖ q)

we show that R ∪R−1 is a witness of the bisimulation, where:

R , {(Dx:G(p) ‖ q,Dx:G(p ‖ q)) | x ∈ V, G ∈ D, p ∈ C, q ∈ C}.

The validity of the transfer conditions for action, time, and environment tran-
sitions follow from the fact that the dynamic type operator does not restrict the
set of allowed action, time, or environment transitions for a given composition. In
particular, for the proof of the transfer conditions for time transitions the predicate
(ρx, ρẋ) ∈ G, obtained by inspecting the time rule for dynamic type, can be used
to introduce the dynamic type operator where required.

To prove that
(u� p) ‖ q↔ u� (p ‖ q)

we show that R ∪R−1 is a witness of the bisimulation, where:

R , {((u� p) ‖ q, u� (p ‖ q)) | u ∈ Pt, p ∈ C, q ∈ C}

The proof of validity of the transfer conditions for the three kinds of transitions
follows from similar arguments as those given in the previous proof.
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Proof of Prop 10. There are 22 bisimulation relations to be proved. Most of these
proofs can be obtained in a similar way. We present here the most relevant cases.

To prove that
γa′(γa(p))↔ γa(γa′(p))

we use as a witness relation

R , {(γa′(γa(p)), γa(γa′(p))) | a′ ∈ A, a ∈ A, p ∈ C}

The validity of the three transfer conditions is a consequence of the commuta-
tivity of ∨ and ∪.

To prove that

|[A a′ :: |[A a :: p ]|]| ↔ |[A a :: |[A a′ :: p ]|]|

we use as a witness relation

R , {(|[A a′ :: |[A a :: p ]|]|, |[A a :: |[A a′ :: p ]|]|) | a′ ∈ A, a ∈ A, p ∈ C}

The validity of transfer conditions for time and environment transitions follows
from the commutativity of ∩. The transfer condition for actions requires a case
analysis. To prove:

(|[A a′ :: |[A a :: p ]|]|, σ)
a′′′,b,X−−−−→ (|[A a′ :: |[A a :: p′ ]|]|, σ′)

⇒

(|[A a :: |[A a′ :: p ]|]|, σ)
a′′′,b,X−−−−→ (|[A a :: |[A a′ :: p′ ]|]|, σ′)

we note first that, according to the rules for action scope operator, there must be an
action transition:

(p, σ)
a′′,b′,X−−−−→ (p′, σ′)

for some a′′ ∈ Aτ , b′ ∈ B.
Then, we need to consider 4 cases:

Case a = a′ = a′′ Then, according to Rule 27, a′′′ ≡ τ , and b ≡ false. If we
invert the order of application of the scope operators, then the action rule for
variable scope ensures that then same labels will result in the conclusion.

Case a = a′′ and a′ 6= a′′ Then, as in the previous case, by Rule 27, a′′′ ≡ τ , and
b ≡ false.

Now consider
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(p, σ)
a′′,b′,X−−−−→ (p′, σ′)

⇔ { Rule 28, a′ 6= a′′ }

(|[A a′ :: p ]|, σ)
a′′,b′,X−−−−→ (|[A a′ :: p′ ]|, σ′)

⇔ { Rule 27, a = a′′ }

(|[A a :: |[A a′ :: p ]|]|, σ)
τ,false,X−−−−−→ (|[A a :: |[A a′ :: p′ ]|]|, σ′)

Case a′ = a′′ and a 6= a′′ Similar to the previous case.

Case a 6= a′′ and a′ 6= a′′ Then, a′′ = a′′′, and according to the action rule for
variable scope, the label is not affected, and therefore the order of application
of the operator can be inverted without altering the resulting label.

The fact that

(|[A a′ :: |[A a :: p ]|]|, σ)
a′′,b,X−−−−→ (|[A a′ :: |[A a :: p′ ]|]|, σ′)

⇐

(|[A a :: |[A a′ :: p ]|]|, σ)
a′′,b,X−−−−→ (|[A a :: |[A a′ :: p′ ]|]|, σ′)

can be proven in a symmetric way.
The validity of the remaining properties is a consequence of the non-

interference between the side conditions of the operators and the change they cause
on the labels. Next, we give an example of this by proving

γa(u� p)↔ u� (γa(p))

The above equivalence can be proven using as a witness R ∪R−1 ∪ IC , where

R , {(γa(u� p), u� (γa(p))) | a ∈ A, u ∈ Pt, p ∈ C}

and IC is the identity function on compositions.
Next we prove the validity of the transfer condition for action transitions. To

this end we make the following derivation:

(γa(u� p), σ)
a′,b∨a=a′,X−−−−−−−−→ (γa(p

′), σ′)

⇔ { Rule for synchronization }

(u� p, σ)
a′,b,X−−−−→ (p′, σ′)

⇔ { Rule for initialization }
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(p, σ)
a′,b,X−−−−→ (p′, σ′), σ |= u

⇔ { Rule for synchronization }

(γa(p), σ)
a′,b∨a=a′,X−−−−−−−−→ (γa(p

′), σ′), σ |= u

⇔ { Rule for initialization }

(u� γa(p), σ)
a′,b∨a=a′,X−−−−−−−−→ (γa(p

′), σ′)

The validity of the remaining transfer conditions is a consequence of the fact that
rules for initialization operator and synchronizing actions do not interfere in the
changes they cause to the labels, or in the side conditions they require.

Proof of Prop 11. To prove

γa(γa(p))↔ γa(p)

we use as a witness relation R ∪R−1, where

R , {(γa(γa(p)), γa(p)) | a ∈ A, p ∈ C}.

Then the validity of the transfer conditions follows from the idempotency of ∨ and
∪.

The validity of
u� (u� p)

follows from Property 12 and idempotency of ∧.
To prove the validity of

|[V a :: |[V a :: p ]|]| ↔ |[V a :: p ]|

we use as a witness relation R ∪R−1, where

R , {(|[V a :: |[V a :: p ]|]|, |[V a :: p ]|) | a ∈ A, p ∈ C}

The validity of the transfer conditions for time and environment transitions follows
from the idempotency of ∩. For action transitions, a proof can be obtained by
performing a simple case analysis.

To prove the validity of

υa(υa(p))↔ υa(p)
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we use as a witness relation R ∪R−1, where

R , {(υa(υa(p)),υa(p)) | a ∈ A, p ∈ C}

The validity of the transfer conditions for action and environment transitions fol-
lows from the fact that the urgency operator does not affect these kind of transi-
tions. For time transitions, the validity of the transfer conditions follows from the
idempotency of entailment (condition 〈∀s : s ∈ [0, t) : a /∈ θ(s)〉).

The validity of
Dx:G(Dx:G(p))↔ Dx:G(p)

follows from Prop 13 and idempotency of ∩.
To prove the validity of

ctrlx(ctrlx(p))↔ ctrlx(p)

we use as a witness relation R ∪R−1, where

R , {(ctrlx(ctrlx(p)), ctrlx(p)) | x ∈ V, p ∈ C}

The validity of the transfer conditions follows from the fact that the control variable
operator does not affect time and environment transitions, idempotency of ∪, and
idempotency of entailment.

Proof of Prop 12. To prove

u� (v � p)↔ (u ∧ v)� p

we use as a witness relation R ∪R−1 ∪ IC , where

R , {(u� (v � p), (u ∧ v)� p) | u ∈ Pt, v ∈ Pt, p ∈ C}

The validity of the transfer conditions is a consequence of the validity of

(σ |= u, σ |= v)⇔ (σ |= u ∧ v)

for the satisfaction relation.
We illustrate the proof of the transfer condition for action transitions. The

proofs for the remaining cases are analogous.
We make the following derivation. Assume:

(u� (v � p), σ)
a,b,X−−−→ (p′, σ′)

⇔ { Only Rule 19 cab be applied}
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(v � p, σ)
a,b,X−−−→ (p′, σ′), σ |= u

⇔ { Only Rule 19 cab be applied}

(p, σ)
a,b,X−−−→ (p′, σ′), σ |= u, σ |= v

⇔ { Definition of satisfaction relation (|=) conjunctions}

(p, σ)
a,b,X−−−→ (p′, σ′), σ |= u ∧ v

⇔ { Only Rule 19 cab be applied}

(u ∧ v � p, σ)
a,b,X−−−→ (p′, σ′)

Proof of Property 13. To prove

Dx:G0(Dx:G1(p))↔ Dx:G0∩G1(p)

we use as witness relation R ∪R−1, where

R , {(Dx:G0(Dx:G1(p)),Dx:G0∩G1(p)) | x ∈ V, G0 ∈ D, G1 ∈ D, p ∈ C}

Next, we prove the validity of the transfer condition for time. To this, we make
the following derivation:

(Dx:G0(Dx:G1(p)), σ)
ρ,A,θ7−→ (Dx:G0(Dx:G1(p′)), σ′)

⇔ { Rule for dynamic type operator, twice}

(p, σ)
ρ,A,θ7−→ (p′, σ′), (ρx, ρẋ) ∈ G0, (ρx, ρẋ) ∈ G1

⇔ { Set algebra }

(p, σ)
ρ,A,θ7−→ (p′, σ′), (ρx, ρẋ) ∈ G0 ∩G1

⇔ { Rule for dynamic type operator }

(Dx:G0∩C0(p), σ)
ρ,A,θ7−→ (Dx:G0∩G1(p′), σ′)

The transfer conditions for action and environment transitions follow from the fact
that the dynamic type operator does not restrict these transitions.
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Proof of Prop 14. We sketch the proof of commutativity of variable scope with
regard to parallel composition. The remaining commutativity laws can be proven
in a similar way.

To prove

|[V x = e0, ẋ = e1 :: p ]|‖ q↔ |[V (x = e0, ẋ = e1)[y, ẏ/x, ẋ] :: p[y, ẏ/x, ẋ] ‖ q ]|

we use as witness relation R ∪R−1, where

R ,{(|[V x = e0, ẋ = e1 :: p ]|‖ q,
|[V (x = e0, ẋ = e1)[y, ẏ/x, ẋ] :: p[y, ẏ/x, ẋ] ‖ q ]|) |
x ∈ V, y ∈ V, y /∈ vars(p), ẏ /∈ vars(p), e0 ∈ E , e1 ∈ E , p ∈ C, q ∈ C}

and vars(p) refers to the set of variables appearing in composition p.
The fact that R ∪ R−1 is indeed a witness relation is a consequence of the

following lemmas.

Lemma 1 (Variable exchange in action transitions). For all y, p, x, X , u, u′, v, v′,
w, w′, σ, σ′, a, and b, such that y /∈ vars(p), we have:

(x ∈ X ⇒ u = u′)∧

(p, {x 7→ v} � {x 7→ u} � {y 7→ w} � σ)
a,b,X\{x}−−−−−−→

(p′, {x 7→ v′} � {x 7→ u′} � {y 7→ w′} � σ′)

if and only if:

(y ∈ X ⇒ w = w′)∧

(p[y/x], {y 7→ v} � {x 7→ u} � {y 7→ w} � σ)
a,b,X\{y}−−−−−−→

(p′[y/x], {y 7→ v′} � {x 7→ u′} � {y 7→ w′} � σ′)

Lemma 2 (Variable overwriting in action transitions). For all p, p′, y, σ, σ′, a, b,
X , v, and v′ such that y /∈ vars(p), we have:

(p, σ)
a,b,X−−−→ (p′, σ′)

if and only if

(p, {y 7→ v} � σ)
a,b,X\{y}−−−−−−→ (p′, {y 7→ v′} � σ′)
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Lemma 3 (Variable exchange in environment transitions). For all y, p, x, v, v′, σ,
σ′, and A, such that y /∈ vars(p), we have:

(p, {x 7→ v} � σ)
A
99K (p′, {x 7→ v′} � σ′)

if and only if:

(p[y/x], {y 7→ v} � σ)
A
99K (p′[y/x], {y 7→ v′} � σ′)

Lemma 4 (Variable overwriting in environment transitions). For all p, p′, y, σ, σ′,
A, v, and v′ such that y /∈ vars(p), we have:

(p, σ)
A
99K (p′, σ′)

if and only if

(p, {y 7→ v} � σ)
A
99K (p′, {y 7→ v′} � σ′)

Lemma 5 (Variable exchange in time transitions). For all y, p, x, v, v′, f σ, σ′, ρ,
θ, and A, such that y /∈ vars(p), we have:

(p, {x 7→ v} � σ)
{x7→f}�ρ,A7−→ (p′, {x 7→ v′} � σ′)

if and only if:

(p[y/x], {y 7→ v} � σ)
{y 7→f}�ρ,A7−→ (p′[y/x], {y 7→ v′} � σ′)

Lemma 6 (Variable overwriting in environment transitions). For all p, p′, y, σ, σ′,
ρ, θ, A, v, and v′ such that y /∈ vars(p), we have:

(p, σ)
ρ,A,θ7−→ (p′, σ′)

if and only if

(p, {y 7→ v} � σ)
{y 7→f}�ρ,A7−→ (p′, {y 7→ v′} � σ′)

These lemmas can be proved by structural induction, the fact that if y /∈
vars(e), then

(σ |= u)⇔ ({y 7→ v} � σ) |= u

and the fact that if y /∈ vars(e), then

({x 7→ v} � σ |= u)⇔ ({y 7→ v} � σ) |= u[y/x]
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For proving Property 15 we need to make use of the following lemmas.

Lemma 7. For all p, σ, a, s, X , p′, σ′, and c, such that c does not appear in p, we
have:

(p, σ)
a,s,X−−−→ (p′, σ′)

if and only if

(p[c/b], σ)
a[c/b],s,X−−−−−−→ (p′[c/b], σ′)

Lemma 8. For all p, σ, A, p′, σ′, and c, such that c does not appear in p, we have:

(p, σ)
A
99K (p′, σ′)

if and only if

(p[c/b], σ)
A[c/b]
99K (p′[c/b], σ′)

Given a setA and two elements b and c, the substitution of b by c inA is defined
as follows:

A[c/b] =

{
A if b /∈ A
(A \ {b}) ∪ {c} if b ∈ A

For time transition a similar lemma is needed. We omit it here to since it
conveys no theoretical interest.

Next, we give the proofs of the lemmas above.

Proof of Lemma 7. The proof goes via structural induction on p.

Basis. Let p = (V, init, inv, tcp, E, varC , actS , dtype). Assume:

(p, σ)
a,s,X−−−→ (p′, σ′)

⇔ { Rule 1}

(v, g, a, (W, r), v′) ∈ E, σ |= init(v), σ |= g, σ |= inv(v), σ′ |= inv(v′),

σ′+ ∪ σ |= r, σ �(X∪varC)\W= σ′ �(X∪varC)\W

s ≡ a ∈ actS

⇔ {Property of substitution, c does not appear in p, then a ∈ p iff a[c/b] ∈
p[c/b]}

(v, g, a[c/b], (W, r), v′) ∈ E[c/b], σ |= init(v), σ |= g, σ |= inv(v),

σ′ |= inv(v′), σ′+ ∪ σ |= r, and σ �(X∪varC)\W= σ′ �(X∪varC)\W
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s ≡ a[c/b] ∈ actS [c/b]

⇔ {Rule 1; definition of substitution}

(p[c/b], σ)
a[c/b],s,X−−−−−−→ (p′[c/b], σ′)

Induction step. We do a case analysis, depending on the structure of p.

Action scope Assume:

(|[A a :: p ]|, σ)
`,s,X−−−→ (|[A a :: p′ ]|, σ′) (B.2)

We do a case analysis on the transition that originated (B.2).

Rule 27 was applied to obtain (B.2) Then we have that ` ≡ τ , s ≡ false, and we
make the following derivation:

(|[A a :: p ]|, σ)
`,s,X−−−→ (|[A a :: p′ ]|, σ′)

⇔ { Hypothesis, Rule 27}

(p, σ)
a,s,X−−−→ (p′, σ′)

⇔ { Induction hypothesis}

(p[c/b], σ)
a[c/b],s,X−−−−−−→ (p′[c/b], σ′)

⇔ { Assumption Rule 27 was applied last; τ 6= b}

(|[A a[c/b] :: p[c/b] ]|, σ)
τ,s,X−−−→ (|[A a[c/b] :: p′[c/b] ]|, σ′)

⇔ { Definition of substitution }

(|[A a :: p ]| [c/b], σ)
τ,s,X−−−→ (|[A a :: p′ ]| [c/b], σ′)

Rule 28 was applied to obtain (B.2) Then we have that ` = a′, for some a′ ∈ Aτ
a′ 6= a, and we make the following derivation:

(|[A a :: p ]|, σ)
`,s,X−−−→ (|[A a :: p′ ]|, σ′)

⇔ { Hypothesis, Rule 28}

(p, σ)
a′,s,X−−−−→ (p′, σ′)

⇔ { Induction hypothesis}

(p[c/b], σ)
a′[c/b],s,X−−−−−−→ (p′[c/b], σ′)

⇔ { Assumption Rule 28 was applied last; a′ 6= a∧ c 6= a′ ∧ c 6= a⇒
a′[c/b] 6= a[c/b] }
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(|[A a[c/b] :: p[c/b] ]|, σ)
a′[c/b],s,X−−−−−−→ (|[A a[c/b] :: p′[c/b] ]|, σ′)

⇔ { Definition of substitution }

(|[A a :: p ]| [c/b], σ)
a′[a/b],s,X−−−−−−→ (|[A a :: p′ ]| [c/b], σ′)

Parallel composition We make a case analysis depending on whether the
action is synchronizing.

Synchronizing action case We make the following derivation:

(p ‖ q, σ)
a,s,X−−−→ (p′ ‖ q′, σ′)

⇔ { Assumption Rule 4 was applied }

(p, σ)
a,true,X−−−−−→ (p′, σ′), (q, σ)

a,true,X−−−−−→ (q′, σ′)

⇔ { Induction hypothesis }

(p[c/b], σ)
a[c/b],true,X−−−−−−−−→ (p′[c/b], σ′)

(q[c/b], σ)
a[c/b],true,X−−−−−−−−→ (q′[c/b], σ′)

⇔ { Assumption Rule 4 was applied; definition of substitution }

((p ‖ q)[c/b], σ)
a[c/b],s,X−−−−−−→ ((p′ ‖ q′)[c/b], σ′)

Interleaving case We make the following derivation:

(p ‖ q, σ)
a,s,X−−−→ (p′ ‖ q′, σ′)

⇔ { Assumption Rule 5 was applied last }

(p, σ)
a,s,X−−−→ (p′, σ′), (q, σ)

A
99K (q′, σ′), a /∈ A

⇔ { Induction hypothesis; c does not appear in of p ‖ q therefore
c /∈ A; Lemma 8 }

(p[[c/b]], σ)
a[c/b],s,X−−−−−−→ (p′[c/b], σ′), (q[c/b], σ)

A[c/b]
99K (q′[c/b], σ′),

a[c/b] /∈ A[c/b]

⇔ { Assumption Rule 5 was applied; definition of substitution }

((p ‖ q)[c/b], σ)
a[c/b],s,X−−−−−−→ ((p′ ‖ q′)[c/b], σ′)

The other interleaving case is symmetric.
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Synchronizing action operator We make the following derivation:

(γa(p), σ)
a′,s∨a′=a,X−−−−−−−−→ (γa(p

′), σ′)

⇔ { Rule 22 }

(p, σ)
a′,s,X−−−−→ (p′, σ′)

⇔ { Induction hypothesis }

(p[c/b], σ)
a′[c/b],s,X−−−−−−→ (p′[c/b], σ′)

⇔ { Rule 22 }

(γa[c/b](p[c/b]), σ)
a′[c/b],s∨a′[c/b]=a[c/b],X−−−−−−−−−−−−−−−−→ (γa[c/b](p

′[c/b]), σ′)

⇔ { Definition substitution, a′ = a⇔ a′[c/b] = a[c/b]}

(γa(p)[c/b], σ)
a′[c/b],s∨a′=a,X−−−−−−−−−−→ (γa(p

′)[c/b], σ′)

The remaining cases are straightforward using induction hypothesis.

Proof of Lemma 8. The proof goes via structural induction on the CIF composi-
tions.

Basis. Let p ≡ (V, init, inv, tcp, E, varC , actS , dtype). Assume:

(p, σ)
A
99K (p′, σ′) where A ≡ actS

⇔ { Rule 3 }

σ |= init(v), σ |= inv(v), σ′ |= inv(v), σ �varC= σ′ �varC

⇔ { Rule 3 }

((V, init, inv, tcp, E[c/b], varC , actS [c/b], dtype), σ)

A
99K ((V, idv, inv, tcp, E[c/b], varC , actS [c/b],dtype), σ′)

⇔ { Definition of substitution }

(p[c/b], σ)
A[c/b]
99K (p′[c/b], σ′)

88



Induction step. We do a case analysis depending on the structure of composition
p.

Action scope Assume:

(|[A a :: p ]|, σ)
A\{a}
99K (|[A a :: p′ ]|, σ′)

⇔ { Rule 30 }

(p, σ)
A
99K (p′, σ′)

⇔ { Induction hypothesis }

(p[c/b], σ)
A[c/b]
99K (p′[c/b], σ′)

⇔ { Rule 30 }

(|[A a[c/b] :: p[c/b] ]|, σ)
A[c/b]\{a[c/b]}
99K (|[A a[c/b] :: p′[c/b] ]|, σ′)

⇔ { A[c/b] \ {a[c/b]} = (A \ {a})[c/b]; definition of substitution }

(|[A a :: p ]| [c/b], σ)
(A\{a})[c/b]
99K (|[A a :: p′ ]| [c/b], σ′)

Parallel composition Assume:

(p ‖ q, σ)
Ap∪Aq
99K (p′ ‖ q′, σ′)

⇔ { Rule 8 }

(p, σ)
Ap
99K (p′, σ′), (q, σ)

Aq
99K (q′, σ′)

⇔ { Induction hypothesis }

(p[c/b], σ)
Ap[c/b]
99K (p′[c/b], σ′), (q[c/b], σ)

Aq [c/b]
99K (q′[c/b], σ′)

⇐ { Rule 8; definition of substitution }

((p ‖ q)[c/b], σ)
(Ap∪Aq)[c/b]
99K ((p′ ‖ q′)[c/b], σ′)

The remaining cases are easy to prove in an analogous way.
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Proof of Property 15. The proof of the equivalences can be obtained using the ob-
vious bisimulation relations.

For proving the validity of

|[A b :: p ]|‖ q↔ |[A c :: p[c/b] ‖ q ]|

we use as a bisimulation relation:

R , S ∪ S−1

where relation S is defined as:

S , {(|[A b :: p ]|‖ q, |[A c :: p[c/b] ‖ q ]|)}

Assume:
(|[A b :: p ]|‖ q, σ)

a,s,X−−−→ (r′, σ′) (B.3)

It is easy to see that r′ can only be of the form:

|[A b :: p′ ]|‖ q′

We do a case analysis depending on whether the action is synchronizing.

Synchronizing case. Then a 6= b because b cannot be synchronizing. Then we
have:

(|[A b :: p ]|‖ q, σ)
a,s,X−−−→ (|[A b :: p′ ]|‖ q′, σ′)

⇔ { Assumption Rule 4 was applied last }

(|[A b :: p ]|, σ)
a,s,X−−−→ (|[A b :: p′ ]|, σ′), (q, σ)

a,s,X−−−→ (q′, σ′)

⇔ { Rule 28 (a 6= b) }

(p, σ)
a,s,X−−−→ (p′, σ′), (q, σ)

a,s,X−−−→ (q′, σ′)

⇔ { Induction hypothesis }

(p[c/b], σ)
a[c/b],s,X−−−−−−→ (p′[c/b], σ′), (q, σ)

a,s,X−−−→ (q′, σ′)

⇔ { a 6= b⇒ a[c/b] = a; Rule 4 }

(p[c/b] ‖ q, σ)
a,s,X−−−→ (p′[c/b] ‖ q′, σ′)

⇔ { Rule 28; c does not occur in p therefore c 6= a }

(|[A c :: p[c/b] ‖ q ]|, σ)
a,s,X−−−→ (|[A c :: p′[c/b] ‖ q′ ]|, σ′)
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Asynchronous case. We distinguish three sub-cases, depending on the component
that performed the action, and whether this action was hidden by the variable scope
operator at the top level.

The first component performed a non-hidden action Then b 6= a, since
otherwise action a would have been hidden.

Then we make the following derivation:

(|[A b :: p ]|‖ q, σ)
a,s,X−−−→ (|[A b :: p′ ]|‖ q′, σ′)

⇔ { Assumption Rule 5 was applied last }

(|[A b :: p ]|, σ)
a,s,X−−−→ (|[A b :: p′ ]|, σ′), (q, σ)

A
99K (q′, σ′), a /∈ A

⇔ { Rule 28; a 6= b }

(p, σ)
a,s,X−−−→ (p′, σ′), (q, σ)

A
99K (q′, σ′), a /∈ A

⇔ { Lemma 7; a 6= b; definition of substitution }

(p[c/b], σ)
a,s,X−−−→ (p′[c/b], σ′), (q, σ)

A
99K (q′, σ′), a /∈ A

⇔ { Assumption Rule 5 was applied last }

(p[c/b] ‖ q, σ)
a,s,X−−−→ (p′[c/b] ‖ q′, σ′)

⇔ { Rule 28; a 6= b, c 6= a }

(|[A a :: p[c/b] ‖ q ]|, σ)
a,s,X−−−→ (|[A c :: p′[c/b] ‖ q′ ]|, σ′)

The first component performed a hidden action In this case we have a =
τ , and b is the action generated by p.

Then we make the following derivation:

(|[A b :: p ]|‖ q, σ)
a,s,X−−−→ (|[A b :: p′ ]|‖ q′, σ′)

⇔ { Assumption Rule 5 was applied last }

(|[A b :: p ]|, σ)
τ,s,X−−−→ (|[A b :: p′ ]|, σ′), (q, σ)

A
99K (q′, σ′), a /∈ A

⇔ { Rule 27 }

(p, σ)
b,s,X−−−→ (p′, σ′), (q, σ)

A
99K (q′, σ′), a /∈ A
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⇔ { Lemma 7 }

(p[c/b], σ)
b[c/b],s,X−−−−−−→ (p′[c/b], σ′), (q, σ)

A
99K (q′, σ′), a /∈ A

⇔ { Rule 5; b[c/b] = c}

(p[c/b] ‖ q, σ)
c,s,X−−−→ (p′[c/b] ‖ q, σ′)

⇔ { Rule 27; a = τ}

(|[A a :: p[c/b] ‖ q ]|, σ)
a,s,X−−−→ (|[A c :: p′[c/b] ‖ q′ ]|, σ′)

The second component performed an action We make the following
derivation:

(|[A b :: p ]|‖ q, σ)
a,s,X−−−→ (|[A b :: p′ ]|‖ q′, σ′)

⇔ { Assumption Rule 6 was applied last }

(|[A b :: p ]|, σ)
A\{b}
99K (|[A b :: p′ ]|, σ′), (q, σ)

a,s,X
99K (q′, σ′), a /∈ A \ {b}

⇔ { Rule 30 }

(p, σ)
A
99K (p′, σ′), (q, σ)

a,s,X−−−→ (q′, σ′), a /∈ A \ {b}

⇔ { Lemma 8; c 6= a⇒ (a /∈ A \ {b} ⇔ a /∈ A[c/b])}

(p[c/b], σ)
A[c/b]
99K (p′[c/b], σ′), (q, σ)

a,s,X−−−→ (q′, σ′), a /∈ A[c/b]

⇔ { Assumption Rule 6 was applied last }

(p[c/b] ‖ q, σ)
a,s,X−−−→ (p′[c/b] ‖ q′, σ′)

⇔ { Rule 28; c 6= a }

(|[A c :: p[c/b] ‖ q ]|, σ)
a,s,X−−−→ (|[A c :: p′[c/b] ‖ q′ ]|, σ′)

For the reminder bisimilarities the proof that the transfer conditions hold can
be obtained in a similar manner.
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