New Concepts in the Abstract Format of the
Compositional Interchange Format *

D.A. van Beek * P. Collins © D.E. Nadales * J.E. Rooda *
R.R.H. Schiffelers *

* Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven,
The Netherlands
{d.a.v.beek, d.e.nadales.agut, j.e.rooda, r.r.h.schiffelers} @tue.nl
T Centrum Wiskunde en Informatica
Postbus 94079, 1090 GB Amsterdam, The Netherlands
pieter.collins @ cwi.nl

Abstract: The compositional interchange format for hybrid systems (CIF) supports inter-operability of a
wide range of tools by means of model transformations to and from the CIF. Work on the CIF takes place
in the FP7 Multiform project, and in several other European projects. The CIF consists of an abstract
and a concrete format, used for defining a formal semantics and for modeling, respectively. This paper
discusses the results of a redesign of the abstract format as previously published, leading to the following
main changes: variables are introduced using scoping operators; the abstract language is made more
orthogonal by providing an operator for each concept in the language; parallel composition has been
defined in such a way that compositional verification (assume/guarantee reasoning) is supported; and the
concept of urgent actions has been properly defined. As a result, the expressivity and semantics of the

abstract language have been considerably improved.

Keywords: Modeling, Automata, Hybrid Systems, Formal Semantics.

1. INTRODUCTION

The main purpose of the Compositional Interchange Format
(CIF), that has originally been developed in HYCON, see HY-
CON Network of Excellence (2005) and Beek et al. (2007b,a,
2008Db), is to establish inter-operability of a wide range of tools
by means of model transformations to and from the CIF. In
addition, the CIF provides a generic modeling formalism and
tools for a wide range of untimed, timed and hybrid systems.
Fig. 1 gives an overview of work on the CIF in different
projects. In the EU FP7 project Multiform, see MULTIFORM
consortium (2008), bidirectional transformations between the
CIF and several languages/tools are developed. In the EU FP7
project C4C, see C4C consortium (2008), work on the CIF is
mainly on compositional verification, whereas in the EU ITEA2
Twins project, see ITEA Twins consortium (2009), the CIF is
connected to tools for supervisory control synthesis. The CIF is
used in several industrial projects. Some examples are presented
in italics in Fig. 1. Not represented in Fig. 1 is work in the EU
FP7 project DISC, see DISC consortium (2009), on possible
connections between the CIF and Petri nets. For an overview
on previous related work on interchange formalisms, such as
found in MoBIES team (2002), Pinto et al. (2006), Cairano et al.
(2006), we refer to Beek et al. (2007b,a).

* This work was partially done as part of the European Community’s Seventh
Framework Programme (FP7/2007-2013) projects MULTIFORM and C4C,
contract numbers FP7-ICT-224249 and FP7-ICT-223844, respectively, as part
of the European Community’s EUREKA cluster program ITEA 2 project
Twins 05004, and as part of the Darwin project under the responsibility of the
Embedded Systems Institute, partially supported by the Netherlands Ministry of
Economic Affairs under the BSIK program.

The CIF consists of an abstract format, which is specified using
mathematical notation and is used for the definition of the formal
semantics and analysis system properties, and a concrete format,
as defined in Beek et al. (2008b), which is specified in the ASCII
character set by a formal grammar and is used as a modeling
language. The semantics of a model in the concrete format is
formally defined by means of a mapping to the abstract format.
The advantage of having two formats is that each can be tailored
to its specific purpose. In general, the abstract format has fewer
concepts in order to simplify the semantics, while the concrete
format has ‘syntactic sugar’ and more emphasis on backward
compatibility in order to facilitate modeling.

In this article, the abstract format is redefined. The main changes
are as follows: variables are introduced using scoping operators;
the abstract language is made more orthogonal by providing an
operator for each concept in the language; parallel composition
has been defined in such a way that compositional verification
(assume/guarantee reasoning) is supported; and urgency of
actions has been redefined.

The remainder of this article is organized as follows. Section 2
defines the syntax along with an informal description of the
semantics; Section 3 presents the new concepts in the abstract
format, together with the most important deduction rules, and
Section 4 presents concluding remarks.

2. REVISED SYNTAX AND INFORMAL SEMANTICS
2.1 Syntax

An atomic interchange automaton oaomic 1S a tuple
Qatomic = (V, vo, flow, inv, tep, E),

Modelica, gPROMS?

* DAE system simulation
® Optimization

CIF:

Modeling!

Matlab/Simulink?

block oriented control

e Simulation!: symbolic, numeric,

Hybrid Chi?

® Formal analysis
P CT/DE simulation

graphical output

/| Sequential Function Charts control!
4«

Compositional verification®:
Ariadne
Distributed control®

A
\ 4

«—

Wonham event-based?®

Modular supervisory control synthesis

Real-time control via EtherCat

Ma/Wonham state-based*

STS Supervisory control synthesis

Real-time control

Rose RealTime Statecharts*: Error

handling printer paper path
Platform specific language®: MRI
scanner patient support control

Fig. 1. Overview of work on the CIF

where V is a set of locations (vertices); vg € V is the initial
location, also called active location; flow, inv, tcp are functions
of the set V — P(V), which associate to each location a predicate
describing the flow condition, the invariant, and the urgency
condition respectively. Here,)V denotes the set of all variables,
Y = {& | x € V} UV denotes the set of variables plus their dotted
versions, and P(X) denotes the set of all predicates over the
variables from set X;

E €V xPOV) x Liasic UCEW) x 2Y x PV UVH)) x V
denotes the discrete transitions (edges) of the automaton, where
Lpasic denotes the set of basic action labels, CE(V) denotes
the set of all send and receive labels, formally defined as
CE(V) = {hles, h?xs |h € H A es € Expr(V)* A xs € V*}
where X* denotes the set of lists whose elements are taken from
set X, Expr(X) denotes the set of all expressions over variables
from set X, and H is the set of all channels, 2X denotes the
powerset of X, and Xt = {v" |v € X} is used to refer to the
values of the variables after the execution of an action.

The set of interchange automata A4 is defined by the following
grammar:

UPPAAL? fieldbus
®_Timed automata verification e CIF to CIF? e.g: hybrid =
timed
PHAVer? A
® Linear hybrid automata v
verification Switched linear systems interchange
format!
1. EU NoE HYCON ::
2. EU FP7 Multif
5 Eﬂ FP; C4uCtI orm Discrete-time PWA!
' ® Multi Parametric Toolbox
4. EU ITEA2 Twins ® Hybrid Toolbox
5. Derfin @ _Identification Ibox

channel; and G is a set of solutions (see Section 3.2 for more
detail on solutions).

2.2 Informal semantics

The semantics of an interchange automaton is defined in terms of
action transitions and time transitions between states consisting
of the interchange automaton itself, a valuation of the variables
and dotted variables of the automaton, and a set of state variables.
These variables are the only ones that are not allowed to change
arbitrarily in action transitions. By default all variables can
change after the execution of an action.

The edges of the atomic interchange automaton are used to spec-
ify which actions can be executed. An edge (v, g, 1, (W, r), v')
can be chosen to perform an action in a given valuation o if v
is the active location; the predicates g, flow(v), and inv(v) are
satisfied in o; and it is possible to find a new valuation ¢’ in
which the predicates r, flow(v'), and inv(v’) are satisfied. After
the execution of the action specified by this edge, the active
location is updated to v'.

Time can pass in an active location v as long as the predicates
flow(v), inv(v), and tcp(v) hold, and no urgent actions become
enabled. Section 3.2 describes how model variables are allowed

to change when time passes. The active location is not modified.

Parallel composition operator o || o1 allows to execute two
automata in parallel, which can interact by means of synchroniz-
ing actions, communication of values via channels, and shared
variables. By default the actions of «g and ¢ are interleaved.

Synchronizing action operator y,(«) specifies that actions a
have to be synchronized with other actions named a that were

o = Ogrom Atomic interchange automaton
o || Parallel composition operator
| Va(a) Synchronizing action operator
lu >« Initialization operator
[[vx =eog, x =e1 2]| Variable scope operator
[faa:al Action scope operator
[gh ol Channel scope operator
AC)) Channel encapsulation operator
| sty () State variable operator
| owny (c) Ownership operator
| Uy () Urgent action operator
| Dy (@) Dynamic type operator

where a € Lpasic is a basic action label; u € P(V) is a predicate
over variables and dotted variables; x is a variable, and e € { L} U
Expr(V) is an expression, where _L denotes the undefined value;
h € 'H is achannel; w € Lyysic U H is a basic action label or a

declared as synchronizing in a parallel context.

Initialization operator u >> « restricts the initial valuations in
which o can start its execution to those which satisfy u.

Variables, actions, and channels can be introduced using scope
operators, which make the identifiers being declared invisible
outside of the scope. In particular, the term |[v x = ep, X = €7 ::
« || declares a local variable x (and associated ‘derivative’ x),

the initial value of which is given by the expression eg (e),
unless eg = L (e; = L) in which case x (X) can have any value.

Channel encapsulation operator 9, (o) forces send and receive
actions via channel 4 to execute synchronously, by blocking
their individual occurrences.

State variable operator sty (o) declares variable x as a state
variable for automaton «, which means that x cannot change
arbitrarily in action transitions. In other words, if @ does not
change x explicitly, for instance by means of an assignment, its
value remains the same after the execution of an action.

Ownership operator own, (o), declares the variable x as belong-
ing to automaton «. This means that only « can change the value
of x. Other automata cannot change the value of x, unless this
change is allowed by « in a synchronizing action.

Urgent action operator Uy, («) declares action w (or the send/re-
ceive actions via w iff w is a channel) as urgent. This means that
time passing is allowed iff action w is not enabled during the
time interval.

2.3 Description of Hybrid Transition System

The structured operational semantics (SOS) of the CIF asso-
ciates a labeled transition system (LTS) with every interchange
automaton. There are three kind of transitions: action transitions,
time transitions, and environment transitions.

An action transition (o, o, X) E> (o, 0/, X') models the
execution of an action with label /, starting in state («, o, X), and
resulting in a new state («’, o', X’). The set A contains the set
of synchronizing actions of «, and the sets X and X’ contain the
set of state variables (see section 3.2) of « and o/, respectively.

A time transition (o, o, X) »ﬂ (o/, 0/, X’) models the passing
of ¢ time units, starting in state («, o, X), and resulting in a
new state (o, o/, X’). Function p contains for each variable the
trajectories on time interval [0, 7], and function 6 contains for
each action the trajectory of the guard(s) associated with this
action on time interval [0, 7].

A environment transition (o, o, X) —é+ (o, 0/, X') states that
1) o (0”) is consistent with the initial conditions and active
invariants of « (a’); 2) the values of the variables owned by «
remain unchanged; and 3) the set of synchronizing actions of «
is A.

3. NEW CONCEPTS

This section presents the new concepts of the abstract CIF, along
with the most important deduction rules. We have chosen to
structure this section based on the concepts, introducing the
most important deduction rules only. Furthermore, examples
are specified using some abuse of notation. For example, an
assignment to a variable x on an edge of an automaton can
be specified as x := 1, thus omitting the locations, guards and
action labels.

3.1 Introducing variables, actions, and channels
In the concrete format, variables are introduced by means

of closed scopes and open scopes. Both concepts of scoping
can be found in modeling languages. In the abstract format,

as defined in Beek et al. (2007b), however, the notion of an
interchange automaton was formalized using concepts from
hybrid automaton theory (e.g. see Alur et al. (1995)). This
means that variables, action labels and channels were defined in
interchange automata, and hiding operators were used instead
of scoping operators.

This mismatch in the way variables were introduced in the
abstract and concrete level added considerable complexity to
the function that mapped the concrete CIF format to the abstract
format. In the new CIF, the sets of internal and external variables
have been removed from the atomic automata. External variable
are introduced in the valuations, and internal variables are
introduced using scope operators.

3.2 Action and delay behavior of variables

In the concrete format of the CIF, variables are declared as
discrete, continuous or algebraic. Such a declaration defines the
behavior of variables in the following way.

For actions, the value of a discrete or continuous variable
does not change in an action transition unless it is explicitly
specified to be allowed to change. E.g, incrementing the value
of variable x by one is expressed on an edge of an automaton by
{x}:xT =x + 1. The set of variables that is allowed to change is
{x}, and in predicate xt =x+1, x and xT refer to the values of
x before and after the transition, respectively. All other discrete
and continuous variables are not allowed to change, and all other
algebraic variables are allowed to change.

For delays, the value of a discrete variable is a constant function;
continuous variables change according to a continuous function
such that the solution function for x is the integral of the
solution function for x (and x is the derivative of x, if such
a derivative exists); algebraic variables may behave according to
a discontinuous function.

To allow an improved separation of concerns, the semantics of
the discrete, continuous and algebraic variables is defined by
two operators in the abstract CIF: the state variable operator
defines the action behavior, and the dynamic type operator
defines the delay behavior. Furthermore, the ownership operator
own() provides new functionality: it prevents automata from
making changes to variables that are owned by other automata.

State variable operator Application of the state variable
operator sty () adds x to the set of state variables X, thus
preventing changes in action transitions. This is formalized in
rule 1:

(.0, X U fx}) 25 (o, o’, X)) |

(st (@), 0, X) L2 (st (@), 0, X)

In principle, the translation function from the concrete CIF
format to the abstract format ensures that the state variable
operator is applied for the discrete and continuous variables.

Ownership operator Formally, this operator only affects
environment transitions. Here, the variable that is declared as
owned by the automaton is not allowed to change. This is used
in parallel composition, see Section 3.5.

A ro o
X,X/H_ (C(,O') -2 (a,O'), O'(_x)_o'(_x))

(own, (@), o) A, (owny (&),)

The difference between the ownership operator and the state
variable operator is subtle; the state variable operator prevents
a variable from changing during an action defined within the
automaton itself, whereas the ownership operator prevents a
variable from jumping during an action defined within another
automaton.

Dynamic type operator The dynamic type operator D,.g (o)
has no effect on action and environment transitions. For time
transitions, the operator ensures that the trajectories for the
variable x and the dotted version of the variable x is restricted
to the behavior that is specified by the set of pairs of solution
functions G. E.g. for a discrete variable x, the set G would
consist of pairs of a constant function as first element, and a zero
function as second element. For a continuous variable, for each
pair, the second function would be the derivative of the first (if
existing), and the first would be the integral of the second.

X,X/H— ((X,O')Iﬂ(a/,o‘/), (pl,_x,p\l/)'c)eG 3

(Dy6(@). 0) F23 (Dyg (@), o)
3.3 Initialization

In the previously published abstract CIF, initialization was
specified by means of the init predicate of an atomic interchange
automaton. The init predicate was also used to store the values
of local variables. The initialization predicate that was present
in the ‘old’ interchange automata is specified by means of the
initialization operator in the new abstract CIF, and the value of
each local variable is stored in a corresponding variable scope
operator. To capture the fact that all initialization predicates
are taken into account simultaneously, as is the case in hybrid
automata, the following properties should hold: u > (1’ >
)< unu'>aand u>a) || W >a) < unu' > (|).

To ensure that the initialization predicate is removed after it has
been taken into account, the deduction rules are:

LA
(@,0) 25 (@, 0), 0 =u

X, X' IF —
u>a0) - (,0)

A
X X (a,0) --» (@', 0, o Eu

A I I
(u>a,0)--»(@,o0)

and likewise for time transitions. Rule § for the parallel compo-
sition ensures that when automaton o executes an action, the
initialization predicates of automaton «, executing in parallel,
are also taken into account. Furthermore, the resulting (right
hand side of the transition) parallel composition of the automata
in the conclusion is constructed as the parallel composition
of the resulting automata in the premises, to ensure that the
initialization predicates are removed after they have been taken
into account. Note that the environment transitions avoid the
need for functions that depend on the syntax of the automata,
which may endanger compositionality of the semantics.

3.4 Synchronization

In the previously defined CIF semantics, actions with the same
name were synchronizing by default. However, common practice
has shown that this is inconvenient, see Theunissen et al. (2008,
2009). This is illustrated by means of the following example.

start

Motor —

stop

low pressure stop

Controller 0: @\@_‘@
s

overheating stop

Controller 1: @_\@N@
.

Fig. 2. Motor and controller automata

Consider motor My with two controllers Cy and C;. Controller
Cy stops the motor if it detects a low oil pressure. Similarly,
controller Cy stops the motor if it detects overheating. The
motor and controllers can be modeled separately by the automata
specified in Fig. 2. Using the previously defined semantics, the
motor can be stopped only if an abnormal event is detected by
both controllers, since the three automata synchronize on the
‘stop’ event.

In the revised CIF semantics, actions having the same name are
non-synchronizing by default. If synchronization is intended,
this can be achieved by using the synchronization operator
y(). Informally, the automaton y,(«) declares the action a as
synchronizing, which means the the execution of action a in
a synchronizes with other automata that have also declared a
as synchronizing. Therefore, in y,(cg) || ¥4 (21) action a must
be executed simultaneously in both automata. If, on the other
hand, in y, (o) || @1, action a is not declared as synchronizing
in o1, then execution of actions a in both automata will be
interleaved. The desired behavior in the example represented
in Fig. 2 can be specified in the new CIF by yjsqp) (Motor) ||
Y(stopy (Controllerq || Controllery).

Note that synchronization by default, as defined in the previous
CIF semantics, can be modeled in the revised abstract language
by enclosing every atomic automaton by appropriate y() opera-
tors. The converse is, however, not true. Therefore, the revised
abstract format is more expressive than the previously defined
one.

The semantics of the synchronization operator is defined using
the set of action labels from the action and environment
transitions. Thus, the effect of the operator y, () is to add the
action a to this set, as shown in the following rule:

[,A
X. X' IF @) = @, 6

1,AU{a)
(Ya(@), 0) ~—= (ya(@), ")
In the SOS rules for parallel composition, the set of synchroniz-

ing actions (on the action and environment transitions) is used
to determine whether an action is synchronizing.

3.5 Parallel composition

Consider a parallel composition of two automata, each with
two locations connected by means of one edge, with a shared
synchronizing action a, and two shared variables x and y. The
automata assign the value 1 to the variables x and y, respectively.
With some abuse of notation this can be specified as y,(a : {x} :
xT=1) || yaa: {y}: y© = 1). In the previously published

semantics of the CIF this was equivalent to one automaton with
one edge: y,(a : {x,y} : xT =1 A y"t =1). In more general
terms: y (a: W :r) || ya(a : W : r’) was equivalent (bisimilar)
to yz(a : WU W’ : r A r’). This functionality was achieved by
means of a set of jumping variables W on action transitions, and
by means of injecting the set of jumping variables of an action
of one automaton into the environment set of jumping variables
of the other automaton, see Beek et al. (2006, 2007a).

In the new semantics, parallel composition is strictly a restriction
for synchronizing behavior. This means that there is a difference
between the behavior of state variables (discrete and continuous
variables) and the other variables (algebraic variables) in the
example: y,(a : {x}:xt =1) || ya(a: {y}: yT = 1) cannot do
any of the two actions if x or y is a state variable (or if they both
are state variables).

In more general terms, we get the following equivalence: y,(a :
W:r)|l yala: W :r') < yi@a: WNW :r Ar'). This
means that for state variables x and y, the example should be
modeled using the new semantics as: y,(a : {x, y} :xT =1) ||
va(a : {x,y} : yT = 1), allowing both variables to change in
both processes; or as: y,([vx = L sty(a: {x}:xT =11 |
Yallvy = Lsty(a: {y}: y* =1) 1)), defining both variables
as local.

In the new semantics, the set of jumping variables has been
removed from the action transitions. Synchronizing action
behavior is specified by means of the following rule:

a€ANB,
A a,B
(@0, 0) =5 (@), o', (@1,0) 25 (@], o)
/
X, X'k —0B 7

(o [l a1, 0) =—— (g || &}, 0")

Clearly, the parallel composition is now the intersection of the
behaviors of the synchronizing components: changes in the
valuations are allowed only if allowed by both partners of the
parallel composition.

For non-synchronizing behavior, the partners of a parallel
composition also need to agree on changes in the values of
variables. In this case, however, the non-synchronizing partners
do an environment transition. An environment transition does
not allow any changes in the values of the ‘owned’ variables,
see Rule 2. It allows all other variables to change arbitrarily,
as long as the active invariants and equations remain satisfied.
This is expressed by the following rule for interleaving parallel
composition:

a¢ ANB,
(@.0) “5 (@), 0", (@1.0) > (@).0")
X, X' |k — U LAY
a,AUB , , ,
(ag |l a1, 0) —— (g || @y, 0")
Consider the example x = 0 > x := 1 || owny(a), where

a denotes a (non-synchronizing) action label. The ownership
operator prevents changes to variable x by parallel components,
as defined by Rules 2 and 8. Therefore, the assignment to x
cannot be executed. When variable x is defined as owned at the
top level, as in own, (x = 0 >> x := 1 || a), the assignment to x
can be executed.

The new syntax and semantics facilitates compositional veri-
fication, because the ownership operator can be applied to an
automaton « in a parallel composition (e.g. own, (a) || ') to
prevent changes to its state variable x by parallel automaton o’.

3.6 Urgency

Urgent actions were introduced in timed and hybrid formalisms
to allow easy modeling of greedy, or eager, behavior. In the
CIF, the passing of time can be restricted by means of the tcp
predicate, or by means of the urgent action operator U, («) that
declares action a to be urgent.

The following example shows a relation between the tcp
predicate and the urgent action operator. Let « = ({v}, v, {v —
true}, {v — true}, {v > true}, {e}) denote an atomic interchange
automaton consisting of a single location v with invariant, flow,
and tcp predicates all true, and one self loop edge e with guard
time > 1 and action label a: ¢ = (v, time > 1, a, (J, true), v).
Then defining the action a as urgent by application of the urgent
action operator U, () is equivalent to the automaton o’ obtained
from « by replacing the tcp predicate by the negation of the
guard: o' = ({v}, v, {v > true}, {v — true}, {v — —(time >
1)}, {e}). However, in the case that an action a synchronizes in a
parallel context, it is not possible to express urgency of such an
action using tcp predicates in a compositional way.

The urgent action operator applied to a parallel composition of
two automata U, (g || «¢1) aims to express that time can pass
only for as long as no action a becomes enabled in «g || «.
For a synchronizing action a to become enabled, the guards of
the action a need to be true in both automata o9 and «. For a
non-synchronizing action a to become enabled, it is sufficient
that a guard in one of the automata o or o] is enabled. Note
that time cannot pass anymore when an urgent action becomes
enabled, independently of whether such an action can actually
be executed. If an invariant of a target location would be false,
then deadlock could be the result.

The required semantics is obtained by augmenting the time
transitions by a pair of guard trajectories (0y, 0,), as defined in
the hybrid Chi formalism (see Beek et al. (2008a)). Namely 60y
for the synchronizing actions, and 6, for the non-synchronizing
actions. Note that for the purpose of simplicity, urgent channels
are not discussed here. A guard trajectory is defined as a mapping
from time-points to guard valuations: Ay, 6, € [0, 1] = ((Lpasic U
{r}) — B), and for all s € [0, t], a € dom(6(s)), x € {y, n}:
6y (s)(a) iff the action a is enabled (the value of the associated
guard is true) at time s.

Guard trajectories are defined in the time transition rule of the
atomic interchange automaton:

Vseo,n0(s) = f(vo) Ai(vo),
Vser0,np(s) = c(vo), dom(p) = [0,t], p(0) =0, t>0

((V,vo, f.i,c, E),0,X) |t’p—'2 ((V,vo, fii,c,E), p(t), X)

where 6 = (0y, 6) and for all time points s € [0, ¢] and actions
a € Lpgsic, Oy and 6, are defined as

dom(by(s)) =¥
On(5)(a) = p()(Vg:getelwo.d.(Wir).v)eE)8) |

To be robust for variable abstraction, the value p(s)(g) of guard
g is used in the guard valuation instead of the guard expressions
itself. If one would choose to use the guard expressions,
abstraction from variables may unexpectedly change the way in
which actions are enabled and disabled, and hence may change
the nature of the urgent behavior of those actions.

1 Note that v g:gey & denotes the predicate false

The urgent action operator U, («) allows for time passing as
long as the guard valuation of the action a remains false.

(@ 0, X) 228 @, o', X)),
Vselo,r) (@ € dom(by(s)) = —6y(s)(a),
a € dom(6,(s)) = —0h(s)(a))

10
(Ua(@), 0, X) P25 Uy (o), o, X')

The urgent action operator does not affect the action and
environment behavior of its operand.

The difference between guard trajectories of synchronizing
actions and non-synchronizing actions becomes clear in the
time transition rule of the parallel composition operator.

X, X' I+

(a0, 0'), (a1, 0)
1,p,(0yoNby1,6n0V6n1)
—

t,p,(9y0,9no)
>

t,p,(9y1,9n1)

(a0, 0) > (a1,0") 1

(a0 [l a1, 0) (e [l a1, 0")

For synchronizing actions, the resulting guard trajectory is
defined as the conjunction of the guard trajectories 6yo and
0y1, whereas for non-synchronizing actions, the resulting guard
trajectory is defined as the disjunction of the guard trajectories
6no and 6,1 .

Finally, for the synchronizing action operator y,(«) we can
informally state that it ‘moves’ the guard trajectory for action a
from 6, to 0y, resetting the guard trajectory for a in 6, to false.

4. CONCLUDING REMARKS

The main advantages of the redesign of the abstract format are
as follows: the abstract and concrete languages are now based
on similar concepts so that the transformation of the concrete
language to the abstract language will be straightforward;
the different concepts in the abstract language are easier to
identify and understand, because each concept is defined by
an operator in an orthogonal way; compositional verification
(assume/guarantee reasoning) is facilitated; urgent actions are
properly defined, and the SOS rules have been considerably
simplified. We expect that the work on the CIF in the different
(EU) projects will benefit accordingly. As a final remark, please
note that all deduction rules of the abstract CIF satisfy the
process-tyft format of Mousavi et al. (2005). Therefore, stateless
bisimilarity is a congruence for all operators.

ACKNOWLEDGEMENTS

The authors thank Pieter Cuijpers, Jasen Markovski, and Michel
Reniers for their contributions in developing the abstract CIF,
and they thank the anonymous reviewers for helpful comments
on the draft of this article.

REFERENCES

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A.,
Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., and Yovine,
S. (1995). The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1), 3-34.

Beek, D.A.v., Hofkamp, A.T., Reniers, M.A., Rooda, J.E., and
Schiffelers, R.R.H. (2008a). Syntax and formal semantics
of Chi 2.0. SE Report 2008-01, Eindhoven University of
Technology, Systems Engineering Group, Department of
Mechanical Engineering, Eindhoven, The Netherlands. URL
http://se.wtb.tue.nl/sereports.

Beek, D.A.v., Reniers, M.A., Rooda, J.E., and Schiffelers, R.R.H.
(2007a). Revised hybrid system interchange format. Technical
Report HYCON Deliverable D3.6.3, HYCON NoE.

Beek, D.A.v., Reniers, M.A., Rooda, J.E., and Schiffelers, R.R.H.
(2008b). Concrete syntax and semantics of the compositional
interchange format for hybrid systems. In 17th Triennial
World Congress of the International Federation of Automatic
Control, 7979-7986. Seoul, Korea.

Beek, D.A.v., Reniers, M.A., Schiffelers, R.R.H., and Rooda, J.E.
(2006). Foundations of a compositional interchange format
for hybrid systems. SE Report 2006-05, Eindhoven University
of Technology, Systems Engineering Group, Department of
Mechanical Engineering, Eindhoven, The Netherlands. URL
http://se.wtb.tue.nl/sereports.

Beek, D.A.v., Reniers, M.A., Schiffelers, R.R.H., and Rooda,
J.E. (2007b). Foundations of an interchange format for
hybrid systems. In A. Bemporad, A. Bicchi, and G. Butazzo
(eds.), Hybrid Systems: Computation and Control, 10th
International Workshop, volume 4416 of Lecture Notes in
Computer Science, 587-600. Springer-Verlag, Pisa.

C4C consortium (2008). Control for coordination of distributed
systems. http://www.c4c-project.eu/.

Cairano, S.D., Bemporad, A., and Kvasnica, M. (2006). An
architecture for data interchange of switched linear systems.
Technical Report D 3.3.1, HYCON NoE.

DISC consortium (2009). Distributed supervisory control of
large plants. http://www.disc-project.eu/.

HYCON Network of Excellence (2005).
hycon.org/.

ITEA Twins consortium (2009). Optimizing HW-SW co-
design flow for sofware intensive system development.
http://www.twins-itea.org/.

MOoBIES team (2002). HSIF semantics. Technical report,
University of Pennsylvania. Internal document.

Mousavi, M.R., Reniers, M.A., and Groote, J.F. (2005). Notions
of bisimulation and congruence formats for SOS with data.
Information and Computation, 200(1), 107-147.

MULTIFORM consortium (2008). Integrated multi-formalism
tool support for the design of networked embedded con-
trol systems MULTIFORM. http://www.multiform.bci.tu-
dortmund.de.

Pinto, A., Carloni, L.P.,, Passerone, R., and Sangiovanni-
Vincentelli, A.L. (2006). Interchange format for hybrid
systems: Abstract semantics. In J.P. Hespanha and A. Ti-
wari (eds.), Hybrid Systems: Computation and Control, 9th
International Workshop, volume 3927 of Lecture Notes in
Computer Science, 491-506. Springer-Verlag, Santa Barbara.

Theunissen, R.J.M., Schiffelers, R.R.H., Beek, D.A.v., and
Rooda, J.E. (2008). Supervisory control synthesis for a patient
support system. SE Report 2008 — 08, Eindhoven University
of Technology, Systems Engineering Group, Department of
Mechanical Engineering, Eindhoven, The Netherlands. URL
http://se.wtb.tue.nl/sereports.

Theunissen, R.J.M., Schiffelers, R.R.H., Beek, D.A.v., and
Rooda, J.E. (2009). Supervisory control synthesis for a patient
support system. In Proceedings of the European control
conference. Budapest, Hungary.

http://www.ist-

