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Abstract— Differential equations with discontinuous right used to control a physical system. Dynamics and control
hand sides enable modeling and analysis of control SyStemStheory can be used to ana|yse such systems under the
with switching elements at a high level of abstraction. Soltions assumption that the embedded computer has zero response
of these differential equations are based on the Filippov, . . . .

Utkin or similar solution concepts. These solution conceyst time, or atlleaSt a fixed _reSponse t!me' In reality, however,

are in general inconvenient for modeling and verification response times of real-time operating systems need not be
using formal languages, because they lead to ambiguities in fixed. Such real-time control systems can be approximated
differential algebraic equations. This paper introduces onvex py means of DE models with stochastic response times,

equations to avoid such ambiguities in formal languages. leading to combined DE/CT models.

Convex equations integrate the functionality of the Filippv - . . o .
solution concept with much of the Utkin solution concept in This paper focusses on the incorporation of ‘differential

general differential algebraic equations. A formal semarics of  (@lgebraic) equations with discontinuous right hand sjdes
convex equations is given, and an example model is specifiedfrom the dynamics and control domain, into formal hy-

using a combined discrete-event / continuous-time formaim.  prid languages from the computer science domain. Such
differential equations allow modeling of relays, valves or
any kind of on/off switching elements at a high level

Hybrid systems related research is based on two, originaflj abstraction in control systems with so called sliding
different, world views: on the one hand the dynamics an®odes. They (Chi) language is well suited to modeling
control world view, and on the other hand the compute&uch phenomena, since it allows discontinuous functions in
science world view. differential algebraic equations, unlike for example hgbr

The dynamics and control world view is that of a predomautomata considered in [1]. Originally, was a modeling
inantly continuous-time (CT) system, which is modeled b@nd simulation language [2] suited to (stochastic) diseret
means of differential (algebraic) equations (DAESs), or bgvent systems and hybrid systems, including the associated
means of a set of trajectories. Hybrid phenomena are mdtiscrete-event control systems. Later, a formal semafdics
eled by means of discontinuous functions and/or switch&tiscrete-eveny [3] and hybridy [4] was developed for the
equation systems. purpose of verification.

The computer science world view is that of a predomi-Section 2 presents a background on solution concepts, Sec-
nantly discrete-event (DE) system. There exist many difion 3 shows how the use of different solution concepts can
ferent languages for modeling of discrete-event systems./@ad to ambiguous specifications. To avoid this ambiguity,
well-known model is a finite-state automaton, but modeling New ‘convex equality’ operator is proposed in Section 4,
of DE systems is also based on, among others, procgggile Section 5 explores other means to obtain unambigu-
algebra, Petri nets, and data flow languages. For modeliggs specifications. Section 6 presents a formal semantics
of hybrid phenomena, different DE languages are extend® general systems of differential algebraic equations in
in different ways with some form of differential (algebraic combination with the convex equality operator, and defines
equations. some properties of this operator. An example is presented

For analysis of hybrid systems in the dynamics and contrth Section 7, and Section 8 presents the conclusions.
domain, notations and concepts from mathematics are used.

For analysis of hybrid systems in the computer science

domain, however, generally used notations and concepf@n€ Of the most popular (and simplest) solution concepts
from mathematics are not sufficient. To enable analysis [ discontinuous differential equations is attributedrie
DE or hybrid systems in the computer science domain, POV [5]. To describe his concept consider the following

notations (syntax), and their exact meaning (semantie) ne?YStem

to be defined, leading thus formal languages. X = f(t,x), xeR" te/t,o0) (1)
For the analysis of hybrid systems, it can be beneficiary to ) o ) )

integrate concepts from dynamics and control with concep8d suppose that the functidnit, x) is piece-wise continu-

from computer science. This is for example the case fs in the domain of intere&, has discontinuities only on a

embedded system design, where an embedded computei&kof zero measure and is bounded on the reGioAt each
point (t, x) of the domainG C [tg, c0) x R" we construct
This work was partially supported by the EU projects SICON@S- a setF(t, x) which consists of only one poinf (t, x) if
2001-37172) and HyCon (FP6-2003-IST-2). All authors ardhwthe  the fynction f is continuous at this point, otherwise the
Dept. of Mechanical Engineering, Eindhoven University @cfinology, . .
P.O. Box 513, 5600 MB Eindhoven, The Netherlands a. v. beek, set F(t, x) is defined as the smallest convex closed set

a. pogronsky, h.nijmeijer, j.e.rooda}@ ue.nl containing all limit points of the functiorf (t, x*), x* — X,

I. INTRODUCTION

Il. BACKGROUND ON SOLUTION CONCEPTS



t is constant. With such a sét(t, x) a Filippov solution where

to system (1) is a solution of the followindifferential -1 x<0
inclusion: sign(x) = {0 x=0
X € F(t, x) (2) 1 x>0

There is a _rather. general way to construct a solutiafhich has a solution in the Filippov sengét) = 0 for x
concept for discontinuous systems. Here we briefly malgitially equal to 0. Therefore, solutions according to the
an overview of this method following [5], see also [6].  Filippov and Utkin solution concepts no longer satisfy the

Consider a system equations at each point of timex(t) # — sign(x(t)) + 0.5

X = f(t, X, ui(t, X), ..., Ur (t, X)) (3) forx(t) =x(t) =0, wherex(t) andx(t) denote the values of
o ) X andx at time-pointt. The equality symbol=" no longer
wherex € R", the vector-valued functiorf is continuous means that the left and right hand sides need to have the
in the set of arguments, and the scalar or vector-valugdme value. Another consequence of the Filippov and Utkin

functions ui, i = 1,....r are discontinuous on the g ytion concepts is that the differential algebraic eiqumat
respective setdVlj. At each point of discontinuity of the system

function u;, a closed set; (t, x) must be given, which is X1 = —Uq + &(t)

a set of possible values of the argumentof the function Xo = Uy

f(t,x,ug,...,u). Fori # j, the argumentss; and u; Uy = sign(xy) (@)
are supposed to vary independently of one another on the Uy = Sign(x1)

setsUi (t, x) andUj (t, x), respectively. At the points where
the functionu; is continuous, the sdbj(t, X) consists of
one pointu;(t, x). At the points of discontinuity of the
functionu; the setU; (t, x) contains all limit points for any
sequence of the formg € U; (t, Xk), wherety — t, Xk — X,
k=1,2,.... The setJ;(t, x) is required to be convex. Then
the solution of the differential inclusion

X € F(t, Xs Ul(ts X)v L) UI’ (tv X))

can have different meanings. Consider initial conditions
(X1, X2) = (0, 0) and |e(t)] < 1, wheree denotes some
function of time. According to the Caratheodory solution
concept, there is a solution only feft) = sign(0) = 0. The
Filippov solution concept does not define a solution for (7).
However, if (7) is rewritten in the form

X1 = —sign(xy) + &(t)
_ _ . @ . X2 = sign(xy), ®
can b? conS|dereq asa s_olu_tlon to the system of d|fferer_1tm5 Filippov solution of (7) can informally be defined as the
equations (3). With a similar approach one can dEf'rE%lution of (8)

Utkin’s equivalent control solution [7] a_nd other solution To find the Filippov solution for this system we have to
concepts (see, e.g. [5]). The Utkin equivalent control deﬁ'nd a set of limit points of the right hand side and the
inition applies to systems of the form (3), wherfe is

a continuous vector-valued functiom;(t, X) is a scalar
function discontinuous only on a smooth surf&ép; (x) =

0), i =1,...,r. At points belonging to one surface (or F(t.0) = {(—1) - <€(t)) £ e[-1 1]} ©)
intersection ofm surfaces) one assumes that ’ 1 0 ’

corresponding differential inclusion. It is not difficuti see
that in this case the set of poinkgt, 0) is defined by

The corresponding differential inclusion

X = f(t, %, u(t, x), ..., um, X),
Ums(t,X). ..., Ur (£, X)), (5) xeFtx
whereequivalent controls u™, j = 1,..., m are defined so has a unique solution for arbitrary initial points. Partéoty,
that the vector fieldf is tangent to the surface, . . ., Sm, for x1 andx» initially O the corresponding solution is
and the valueufq(t, X) is contained in the closed interval t
[u7 (t, X), U (t, x)]. Hereu, u are the limit points of x1(t) =0, x2(t) 2/0 e(s)ds

the function ui on both sides of the surface§. This Consider now the Utkin solutions of (7). For this model at

solution concept can be reduced to the differential in: . . . .
clusion (4), whereU; (t, x) is a segment with end-pointsriroemd'ticeogg?u'ty poinky = 0, the vector can take values

ui (t, x), ui+(t, X), and for thosay; which are continuous at
the point(t, x), the setU; (t, X) consists of just one point {(—51 + €(t)) &1 e [—1 1.6 € [-1. 1]}’ (10)

Ui (t, X). &2
I1l. DIEFERENT SOLUTION CONCEPTS LEAD TO which is larger than (9). Therefore, an Utkin solution for
AMBIGUOUS SPECIEICATIONS (7) can be different from a Filippov solution for (8), which

. . . . : ._can be informally understood as a Filippov solution for (7).

Consider the following differential equation as an intro; iselv. th Ki luti I itin|

ductory example More_ precisely, t e_Ut in solution concept allows multiple
solutions for (7) while the Filippov solution concept allow

X = —signx) + 0.5 (6) only a unigue solution for (8), for all initial points.



It appears that the current mathematical notation for DAEdModel (7) with respect to the Filippov solution of (8)
is not sufficiently expressive to avoid ambiguity. Althougttan be unambiguously specified using the convex equality
for experts in the field of DAEs this may in general not beperator in several ways. The following two specifications
a problem, for non-experts, this is at least confusing. Fbiave the same solutions for; and x2 as the Filippov
tool support in the areas of computer-based analysis, asalution for (8), but the models below also define solutions
for formal languages, the problem is even clearer. Here, tfer u; andus:
notationmust be unambiguous.

X1 —uy +&(t)
IV. CONVEX EQUATIONS AS A MEANS FOR X2 | = U2 (16)
UNAMBIGUOUS SPECIFICATIONS ui sign(x1)
) ) . uz sign(x1)
In this paper we propose an unambiguous notation by
introduction of a new binary mathematical operatothat and .
; : X1 = —U1+&(t)
denotes convex equality. Informally, the meaning of % — U
2=U2
. 17
v= f(X, x,u,t), (12) ur) . sign(xy) (17)
uz Sign(x1)
where v denotes some scalar or vector, ewly= uy or ] )
X2 When solutions fou; andu, are not considered relevant,
v=1_{4) and f denotes some scalar or vector valuegha model can be simplified to
function with the same dimension asis as follows. Convex , .
; . PRI X X1\ . [ —signx t
equation (11) is satisfied in either of the following two case <x;) = < gsré;nt;:)_ & )> (18)

1) for all points for which f is a continuous function if
v = f(X,x,u,t), and 2) at each discontinuity point dfif  Specification (17) has the following meaning:
v is an element of the convex combination of limit points X1 = —
. . - . 1= —U1+ &)
of f in the discontinuity point. Yo = U
Normal and convex equations are predicates. Dependin Uy sign(x1) Uy (19)
on the values of the variables, they are either true or false9(u2> = (sign(xl)) V(x1=0n (uz) € co(L)),
For example = sign(0.2) and 1= sign(0.2) are both true,
0.2 = sign(0) is false, but @ = sign(0) is true. where 1 1
As another example, L= {(:1> , (1)}

y = sign(x) (12)  denotes the set of limit points. The convex combination
co(L) is a line segment connecting the two limit points, so

is equivalent to - LR I k
thatu; = up. Therefore the above specification is equivalent

y=signx) v (x=0Aye[-11]) (13) to ,
X1 = —U1 + e(t)
This means that whenever (12) occurs in a model, it can Xo = Up
be replaced by (13) without changing the meaning of the Uy = U (20)
model. Uz = sign(x1)

Where the system of equations (7) can have three different

meanings, related to either the Caratheodory, the FilippO\The mo;t Important advan_tage of the new convex equality
or the Utkin solution concept, the meaning of a moddjPerator is that th_e meaning of a system of D.AES and
specified using convex equations is unambiguous. Usiﬁgnvex equations s stralghtforwarq and_ unambiguous. A
convex equations, equality=" is indeed proper equality. second advantage of convex equations is that they can be

This means that solutions of model (7) then correspo ed in general (impli_cit) DAE.S. and integrate the function-
to the solutions according to the Caratheodory soluti ity of these DAES with the Filippov solution concept, and
é/lvith much, but not all, of the Utkin solution concept. This,

In principle, enables formal (computer-based) analysia of

X1 = —u1+e(t) wide range of hybrid models.
X2 = U2
o 14
U1 = sign(xy) (14) V. OTHER MEANS FOR UNAMBIGUOUS SPECIFICATIONS
Uz = sign(xy) This section explores other means to obtain unambiguous

specifications. We first consider the possibility of adogtin
the most widely used Filippov solution concept #®

X1 = —U1 + &(t) solution concept. In this way, the semantics of equations
X2 = U2 (15) in a language with associated computer-aided analysis tool
up = sign(xy) v (x1 =0Au1 € [-1,1]) could be defined in the Filippov sense. This is a valid option
Uz = sign(x1) vV (x1 =0A Uz € [—1,1]) if only ordinary differential equationg = f (x,t) (ODES)

which can be rewritten without convex equations as



are considered. For such systems of equations, the Filippgeurthermore, the meaning of expressions on set valued

solution concept unambiguously defines the meaning. fanctions, such ag op g for arbitrary set valued functions

many cases, however, ODEs are not sufficiently expressiie,and g and numeric operatoop, then also needs to be

and DAEs are required. Consider for example the frictiodefined. As a conclusion we can state that although the

phenomenon. A driving forcéy is applied to a body on Filippov solution concept, differential inclusions, anelt-s

a flat surface with frictional forcd~ (see Fig. 1). When valued functions are convenient for mathematical analysis
they are inconvenient for modeling and computer aided

Fn analysis.
F Fd v VI. FORMAL SEMANTICS OFDAES WITH CONVEX
EQUATIONS
In the previous sections, the meaning of the convex equal-
Fig. 1. Body with friction. ity operator and convex equations was defined informally.

This section presents a formal semantics that unambigyousl
the body is moving with velocityy, the frictional force and rigourously defines the meaning of convex equations.
is given by i = uFn, where Fy = mg, and o is the This is especially important for formal analysis of hybrid
friction coefficient. When the velocity of the body is zercsystems where the discrete-event behavior consists of more
and|F4| < uFn, the frictional force neutralizes the appliedhan just switched equations, but includes, among others,
driving force. If we assumgFy =1, m=1, Fg =0.5, and assignments, communication, parallel and alternative-com
introduce a variablg/ that indicates whethex is positive, position (see for example [4]).
negative or zero, the model becomes: Differential algebraic equations are defined as predicates
over variables, X, y, t, where the values of these variables

).(: v can be defined as either (vectors of) realsg RK) or
V= 015_ Fr (21) (vector) functions from time to reals. Consider for example
Fr = sign(v) '
y = sign(x) X=-x+1 (22)
The Filippov solution concept defines the solution¥aand  \when the values of variables are considered to be functions
v of (21) as the solution of (x,x e T - RK, T = Rxg), the left and right hand sides
X v of (22) denote functions. This means that the ‘number’ 1
(i}) = (o.5 — sign(v)) then denotes the constant function of time that is 1 for all

: I . arguments. Furthermorg, then denotes the functiogx,
in the sense of (2). If initiallyx andv equal O, the solution 9 #f

for x andv is x(t) = v(t) = 0. However, since the friction or functionx IS |mpI|C|tIy deflngd asx(h) = fO X(s)ds.
force Fs is a physically relevant variable, a solution of The semantics in this section cl?n_3|ders the values of
(21) should also define the value & (and the value varlaples to be (\_/ectors of) reals ¢ RY), instead 9f (vector)
of y) as a function of time. The only way for modelfunctlorlls from tllme to reals. Therefore, §O|utIOP(SX €
(21) to be consistent with the solution(t) = v(t) = 0 T — R* are defined, such that the function values satisfy
is for F — 0.5. which leads to th biquity thak — predicate (22)_at all points of tim&;c1t X(t) = —X(t) + 1,
is for Ff = 0.5, which leads to the ambiguity f = t - .
sign(v) = sign(0) = 0.5, whereasy = sign(x) = sign(0) = 0 andX(t):f0 X(s)ds. Furthermore, in the formal semantics

d =Sl T Y =51 =519 ~. . .aclear distinction is made between variable names and their

Therefore, although the Filippov solution concept itself i lues. The essence of this formal semantics is a separation
unambiguously defined for ODEs, its application to syste betweén' P

of differential algebraic equations may lead to ambiguities. ] . . .
Another attempt to avoid ambiguities is to explicitly intro  ® The semantics of a single predicate over variables

duce set valued functions in the language. This would lead @nd dotted variables (derivatives). This semantics is
to, for example: defined in terms of functions of time for all variables.

Predicates can denote DAES or convex equations.
X € —Signx) + ¢ « The semantics of a system of several predicates in
terms of the semantics of its individual predicates.
« The semantics of the convex equality operatorThis
{—1} x <0 semantics defines for which values of its variables a
Signix) = {[-1,1] x=0 convex equation (predicate) is satisfied.

where the set valued function Sign could be defined as:

{1 x>0 A. Equation semantics

A disadvantage of using set valued functions in formalConsider a set of variable namesV =
models is that syntax / notations are needed to define $®{, ..., Xn, X1, ..., Xn, V1, ..., Ym, t}, for which we
valued functions. This leads to, for example, to two différe use the following abbreviatioty = {x, X, y, t}. Variable
sign functions: signre R — R and Signe R — P(R). namet denotes time. Variableg, X;, yj take values iR



(1<i=<n,1<j=<m),andt takes values iT. The values B. Convex equation semantics
of these variables is captured by means obaiuation  \ve define a convex equatiom= €, (e, € € EX), to be

o €X, wherex =V — (RU 1), where L denotes an gatisfied for data point € R, r = 2n+m+ 1, if and only

undefined ‘value’. if 0 e cl(co(L(&— &, c))), so that
An equationq € Q, where Q denotes the set of all . o
differential algebraic equations over variables fréfis a evale=€,c) = OeclcolE—-¥€,0)). (24)

predicate over variables frond. Two types of equations \ynere & ¢ R" —» RK denotes the function obtained by
q are considered: normal eqliat|oas=ke/, and convex evaluating expressioafor valuess € R : &) = eval(e, s).
equationse = €, wheree, € € EY, andE denotes the set ryrthermore, £(f, c) denotes the set of limit points of
of k-tuples of real-valued expressions. ElementEbfare function f in point ¢, co(L) denotes the smallest convex
syntac_tically represented &stuples or ask x 1 matrices. ggt containing_, coe P(R¥) — P(RX), and clL) denotes
E.g. X2_xy € E2 and(x — y, 2x) € E2 denote the same the closure of set, cl € P(R¥) — P(R¥).

Informally, without making a distinction between variable
names and their values, the semantics of convex equations
can be defined in an easier way. Informally, a convex
equation can be written agx, x, y,t) = 0, wherex € R",

x € R", y € R™ and timet € R>o. Such a convex equation
is satisfied in point € R?"*™+L if and only if

0 e cl(co(L(g, ©)))

2-tuple.

Variables are evaluated by means of valuation function
expressions and equations are evaluated by means of ev.
ation function evak ((EXU Q) x £) — (RK U {true false}).

We also define a second evaluation function ‘exal EX U
Q) x R:tm+ly _ (RK U {true falsg), such that

eval(&,c) =eval, (X1 — C1, ..., Xn > Cn, o
. . C. Limit points
XlHCn-‘rla ey Xanzna . r k r Ky .
FunctionL € (R" — R¥) x R") — P(R") is defined as:
Y1+ Cngl, ---» Ym > Congm, t = Conymy1)),

where ¢ denotes either an expression or an equation, andﬁ(f’ c) =
c=(C1,...,Conyme1) € RZMH1 s called adata point. Fur- l eR¥|3(ci}eW:(lim g =c,|=Ilm ()}
thermore, we define (x), o (%), o (y) to denote the tuples e e

(0(XD), - - o, 5 (Xn)), (@ (XD, - - ., 5 (%)), (@ (YD), - - - 0 (Yem)) where ¥ denotes the set of all infinite sequences of

points from R", and {Cj} denotes the infinite sequence

respectively. ; ’
Consider for example the set of vari-% -G Cj+1,k- such thatcj € R forall j.
ables V. = {xg,%yt}, the valuaton o = A setAc P(RX) is called convexiffa,be A:Va € [0, 1] :

(X1 1L %1+> 6,y1> 4t 1), and data point cea+ (1- a?b € A. A geometrical ir_1terpretati_on is that for

C = (L6 4 1. Then o(xq) = 1, o(X) = 6, ay two pointsa andb of A, all points qf a Ilne-segr_ne_nt

evalxi + y1 + t,0) = eval(x1 + y1 + t,c) = 6, Joininga andb also belong toA. For a f|n|t§\ set of limit

evalky = x1 + y1 +t, o) = eval (X1 = X1 + y1 + 1, ©) = true, pointsL, cl(co(L)) = co(L), and cd@L) is defined as:

and evalxy = x3 + Y1, 0) = eval(X; = X1 + y1, ¢) = false.
The semantics of an equatianwith valuationo (where

o (X) ando (y) may be undefined) is defined in terms of a set

of solutions on intervalto, t1], to =o' (1), t1 > to. A solution  p. Properties of convex equations

is a pair (X, Y), where X denotes a solution function for . .
. ) : . Below three properties of the convex equality operator are
variablesx andY denotes a solution function for variablgs defined:

The set of solutions is defined by means of solution function
Sc(ETxQxT)— PUT - R" x (T — RM) such that ckE=(v=e) iff eval(v,c) e cl(co(L(&,c))) (25)

co({ly, ... Ik} ={eslr + ... +aklk |
at,...,ok €Rsp, 01+ ...+ =1, k=>1}

V(X,Y) € S(0,0, 1) : X(to) = o/(x) A &— & is continuous inc =

" X(9)ds CE(e=e)iff cl(e=¢€)) (26)

t
@AX eT — R": (Vt € [to, t1] : X(7) =/

to
v wheree, € € EX, andv denotes &-tuple of variables (e.g.
ARE@,X@, Y@, D =), (29 for k = 3, v could denotéXxy, y1, ¥2), and fork = 1, v could
wherec = q, c € R2"™1 means that equatianis satisfied denotex).
for data point. Thereforec = q if and only if eval(qg, ¢) = . . o B ,
true. Furl?thermore, the resulti(ilg valuati;/h is defi?wed as: VoenueT 180X = 6, 11) = Srilippov(o, X = &, 1) (27)
o’'(xX) = X(t1), o’(y) = Y(t1), ando’(t) = ty. whereey; denotes an expression oveandt, such thagy; is
The set of solutions of a system of equatiaps...,qp continuous fort, S denotes the solution function defined in
is S1N...NSp, whereS; denotes the set of solutions of(23), andSrilippov(o, X = ¢, t1) denotes the set of Filippov
equationg; (i =1,..., p). solutions ofx = ey for initial stateo up to time-pointt;.



Property (25) makes it easier to understand the meaniHgre, evdlX, c) denotesX(7), and £ (&, ¢) can be sim-
of the usual form of convex equations= e, wherev is plified to L(&, (X(t), 7)) sincex does not occur irey;.
some variable, and some expression: = e is true in data We can then write (28) aX (1) € cl(co(L(f, (X(1), 1)))),
point c if and only if the value ofv at data pointc is an where f denotesgy;, which, under the assumption thét
element of the closure of the convex combination of limiis continuous fott, denotes exactly the Filippov solution as
points of functioné at data point. defined by differential inclusion (2) in Section II.

Property (2§) means that convex equality is the same as VIl. EXAMPLE x MODEL
normal equality for values where the left hand expression . .
minus the right hand expression represents a continuou his septlon prese.“t? an example ofxamodel. .The
function. Stated informallyy = f(x, X, y, t), wherev is example is the dry friction example treated in Section V
some variable, has the same meaning as f(x, X, y, t) (X,v,Fg, Ff:real, x=0,v=0
for all points wheref is a continuous function. | Fg=f@®)

Property (27) shows that convex equations are at least as, X =v

expressive as normal equations using the Fillipov solution , my = Fg — F
concept. Stated informally: the Fillipov solution concépt , Fr = nFnsign(v)
defined only for equations of the forth= f(x,t). Such )

equations are expressed by means of convex equations as , .
T - . where X, v, Fg, Ff denote continuous variableg,, Fy,
X = f(x, 1), and the set of solutions is the same.

m denote constantg, denotes the timef denotes some
E. Proofs function of time, andk = 0, v = 0 denote initial values, at

To prove Property (25) we use Definition (24): time zero, forx andv.

VIII. CONCLUSIONS

eval(v = e c) Dynamical systems written in the form of differential

=0 € cl(co(L(v — & 1)) algebraic equations with discontinuous right hand sides
= 0 € cl(co(eval (v, ) — L(&, c))) may result in ambiguities. From a mathematical point of
— 0 e cl(co(L(8, c) — eval(v, ©))) view this need not be a problem, because a given equation

can be interpreted — possibly in different ways — as a
differential inclusion. This approach is not convenient fo
To prove Property (26), we need to prove that for all valudgrmal languages. In this paper we have introduced convex
¢ for which functioné — & is continuous, if evdle = €,c) eduations to model such systems in formal languages, such
is true then evale = €, ¢) is true, and if evadle=¢,c) is as thex language [4]. The semantics of convex equations
false then evale = €, ¢) is false. is formally defined.
If function & is continuous irc thené& has one limit point ACKNOWLEDGEMENTS
only inc: L(& c) = {eval(e, c)}. Therefore, with definition
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