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Abstract— Differential equations with discontinuous right
hand sides enable modeling and analysis of control systems
with switching elements at a high level of abstraction. Solutions
of these differential equations are based on the Filippov,
Utkin or similar solution concepts. These solution concepts
are in general inconvenient for modeling and verification
using formal languages, because they lead to ambiguities in
differential algebraic equations. This paper introduces convex
equations to avoid such ambiguities in formal languages.
Convex equations integrate the functionality of the Filippov
solution concept with much of the Utkin solution concept in
general differential algebraic equations. A formal semantics of
convex equations is given, and an example model is specified
using a combined discrete-event / continuous-time formalism.

I. I NTRODUCTION

Hybrid systems related research is based on two, originally
different, world views: on the one hand the dynamics and
control world view, and on the other hand the computer
science world view.

The dynamics and control world view is that of a predom-
inantly continuous-time (CT) system, which is modeled by
means of differential (algebraic) equations (DAEs), or by
means of a set of trajectories. Hybrid phenomena are mod-
eled by means of discontinuous functions and/or switched
equation systems.

The computer science world view is that of a predomi-
nantly discrete-event (DE) system. There exist many dif-
ferent languages for modeling of discrete-event systems. A
well-known model is a finite-state automaton, but modeling
of DE systems is also based on, among others, process
algebra, Petri nets, and data flow languages. For modeling
of hybrid phenomena, different DE languages are extended
in different ways with some form of differential (algebraic)
equations.

For analysis of hybrid systems in the dynamics and control
domain, notations and concepts from mathematics are used.
For analysis of hybrid systems in the computer science
domain, however, generally used notations and concepts
from mathematics are not sufficient. To enable analysis of
DE or hybrid systems in the computer science domain, the
notations (syntax), and their exact meaning (semantics) need
to be defined, leading thus toformal languages.

For the analysis of hybrid systems, it can be beneficiary to
integrate concepts from dynamics and control with concepts
from computer science. This is for example the case in
embedded system design, where an embedded computer is
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used to control a physical system. Dynamics and control
theory can be used to analyse such systems under the
assumption that the embedded computer has zero response
time, or at least a fixed response time. In reality, however,
response times of real-time operating systems need not be
fixed. Such real-time control systems can be approximated
by means of DE models with stochastic response times,
leading to combined DE/CT models.

This paper focusses on the incorporation of ‘differential
(algebraic) equations with discontinuous right hand sides’,
from the dynamics and control domain, into formal hy-
brid languages from the computer science domain. Such
differential equations allow modeling of relays, valves or
any kind of on/off switching elements at a high level
of abstraction in control systems with so called sliding
modes. Theχ (Chi) language is well suited to modeling
such phenomena, since it allows discontinuous functions in
differential algebraic equations, unlike for example hybrid
automata considered in [1]. Originally,χ was a modeling
and simulation language [2] suited to (stochastic) discrete-
event systems and hybrid systems, including the associated
discrete-event control systems. Later, a formal semanticsfor
discrete-eventχ [3] and hybridχ [4] was developed for the
purpose of verification.

Section 2 presents a background on solution concepts, Sec-
tion 3 shows how the use of different solution concepts can
lead to ambiguous specifications. To avoid this ambiguity,
a new ‘convex equality’ operator is proposed in Section 4,
while Section 5 explores other means to obtain unambigu-
ous specifications. Section 6 presents a formal semantics
for general systems of differential algebraic equations in
combination with the convex equality operator, and defines
some properties of this operator. An example is presented
in Section 7, and Section 8 presents the conclusions.

II. BACKGROUND ON SOLUTION CONCEPTS

One of the most popular (and simplest) solution concepts
for discontinuous differential equations is attributed toFil-
ippov [5]. To describe his concept consider the following
system

ẋ = f (t, x), x ∈ R
n, t ∈ [t0,∞) (1)

and suppose that the functionf (t, x) is piece-wise continu-
ous in the domain of interestG, has discontinuities only on a
set of zero measure and is bounded on the regionG. At each
point (t, x) of the domainG ⊂ [t0, ∞) × R

n we construct
a set F(t, x) which consists of only one pointf (t, x) if
the function f is continuous at this point, otherwise the
set F(t, x) is defined as the smallest convex closed set
containing all limit points of the functionf (t, x∗), x∗ → x ,



t is constant. With such a setF(t, x) a Filippov solution
to system (1) is a solution of the followingdifferential
inclusion:

ẋ ∈ F(t, x) (2)

There is a rather general way to construct a solution
concept for discontinuous systems. Here we briefly make
an overview of this method following [5], see also [6].

Consider a system

ẋ = f (t, x, u1(t, x), . . . , ur (t, x)) (3)

wherex ∈ R
n, the vector-valued functionf is continuous

in the set of arguments, and the scalar or vector-valued
functions ui , i = 1, . . . , r are discontinuous on the
respective setsMi . At each point of discontinuity of the
function ui , a closed setUi (t, x) must be given, which is
a set of possible values of the argumentui of the function
f (t, x, u1, . . . , ur ). For i 6= j , the argumentsui and u j

are supposed to vary independently of one another on the
setsUi (t, x) andUj (t, x), respectively. At the points where
the functionui is continuous, the setUi (t, x) consists of
one point ui (t, x). At the points of discontinuity of the
function ui the setUi (t, x) contains all limit points for any
sequence of the formvik ∈ Ui (tk, xk), wheretk → t, xk → x ,
k = 1,2, . . .. The setUi (t, x) is required to be convex. Then
the solution of the differential inclusion

ẋ ∈ F(t, x, U1(t, x), . . . , Ur (t, x)) (4)

can be considered as a solution to the system of differential
equations (3). With a similar approach one can define
Utkin’s equivalent control solution [7] and other solution
concepts (see, e.g. [5]). The Utkin equivalent control def-
inition applies to systems of the form (3), wheref is
a continuous vector-valued function,ui (t, x) is a scalar
function discontinuous only on a smooth surfaceSi (ϕi (x) =

0), i = 1, . . . , r . At points belonging to one surface (or
intersection ofm surfaces) one assumes that

ẋ = f (t, x, ueq
1 (t, x), . . . , ueq

m (t, x),

um+1(t, x), . . . , ur (t, x)), (5)

whereequivalent controls ueq
j , j = 1, . . . ,m are defined so

that the vector fieldf is tangent to the surfacesS1, . . . , Sm ,
and the valueueq

i (t, x) is contained in the closed interval
[u−

i (t, x), u+
i (t, x)]. Here u−

i , u+
i are the limit points of

the function ui on both sides of the surfacesSi . This
solution concept can be reduced to the differential in-
clusion (4), whereUi (t, x) is a segment with end-points
u−

i (t, x),u+
i (t, x), and for thoseui which are continuous at

the point(t, x), the setUi (t, x) consists of just one point
ui (t, x).

III. D IFFERENT SOLUTION CONCEPTS LEAD TO

AMBIGUOUS SPECIFICATIONS

Consider the following differential equation as an intro-
ductory example

ẋ = − sign(x) + 0.5 (6)

where

sign(x) =











−1 x < 0

0 x = 0

1 x > 0

which has a solution in the Filippov sensex(t) = 0 for x
initially equal to 0. Therefore, solutions according to the
Filippov and Utkin solution concepts no longer satisfy the
equations at each point of timet: ẋ(t) 6= −sign(x(t)) + 0.5
for x(t) = ẋ(t) = 0, wherex(t) andẋ(t) denote the values of
x and ẋ at time-pointt. The equality symbol ‘=’ no longer
means that the left and right hand sides need to have the
same value. Another consequence of the Filippov and Utkin
solution concepts is that the differential algebraic equation
system

ẋ1 = −u1 + ε(t)
ẋ2 = u2
u1 = sign(x1)

u2 = sign(x1)

(7)

can have different meanings. Consider initial conditions
(x1, x2) = (0, 0) and |ε(t)| < 1, where ε denotes some
function of time. According to the Caratheodory solution
concept, there is a solution only forε(t) = sign(0) = 0. The
Filippov solution concept does not define a solution for (7).
However, if (7) is rewritten in the form

ẋ1 = − sign(x1) + ε(t)
ẋ2 = sign(x1),

(8)

the Filippov solution of (7) can informally be defined as the
solution of (8).

To find the Filippov solution for this system we have to
find a set of limit points of the right hand side and the
corresponding differential inclusion. It is not difficult to see
that in this case the set of pointsF(t, 0) is defined by

F(t, 0) =

{(

−1
1

)

ξ +

(

ε(t)
0

)

| ξ ∈ [−1, 1]

}

(9)

The corresponding differential inclusion

ẋ ∈ F(t, x)

has a unique solution for arbitrary initial points. Particularly,
for x1 and x2 initially 0 the corresponding solution is

x1(t) = 0, x2(t) =

∫ t

0
ε(s)ds

Consider now the Utkin solutions of (7). For this model at
the discontinuity pointx1 = 0, the vectorẋ can take values
from the set

{(

−ξ1 + ε(t)
ξ2

)

| ξ1 ∈ [−1, 1], ξ2 ∈ [−1, 1]

}

, (10)

which is larger than (9). Therefore, an Utkin solution for
(7) can be different from a Filippov solution for (8), which
can be informally understood as a Filippov solution for (7).
More precisely, the Utkin solution concept allows multiple
solutions for (7) while the Filippov solution concept allows
only a unique solution for (8), for all initial points.



It appears that the current mathematical notation for DAEs
is not sufficiently expressive to avoid ambiguity. Although
for experts in the field of DAEs this may in general not be
a problem, for non-experts, this is at least confusing. For
tool support in the areas of computer-based analysis, and
for formal languages, the problem is even clearer. Here, the
notationmust be unambiguous.

IV. CONVEX EQUATIONS AS A MEANS FOR

UNAMBIGUOUS SPECIFICATIONS

In this paper we propose an unambiguous notation by
introduction of a new binary mathematical operator$ that
denotes convex equality. Informally, the meaning of

v $ f (ẋ, x, u, t), (11)

where v denotes some scalar or vector, e.g.v = u1 or

v =

(

ẋ2
u

)

, and f denotes some scalar or vector valued

function with the same dimension asv, is as follows. Convex
equation (11) is satisfied in either of the following two cases:
1) for all points for which f is a continuous function if
v = f (ẋ, x, u, t), and 2) at each discontinuity point off if
v is an element of the convex combination of limit points
of f in the discontinuity point.

Normal and convex equations are predicates. Depending
on the values of the variables, they are either true or false.
For example 1= sign(0.2) and 1$ sign(0.2) are both true,
0.2 = sign(0) is false, but 0.2 $ sign(0) is true.

As another example,

y $ sign(x) (12)

is equivalent to

y = sign(x) ∨ (x = 0 ∧ y ∈ [−1, 1]) (13)

This means that whenever (12) occurs in a model, it can
be replaced by (13) without changing the meaning of the
model.

Where the system of equations (7) can have three different
meanings, related to either the Caratheodory, the Filippov
or the Utkin solution concept, the meaning of a model
specified using convex equations is unambiguous. Using
convex equations, equality ‘=’ is indeed proper equality.
This means that solutions of model (7) then correspond
to the solutions according to the Caratheodory solution
concept. The Utkin solution of (7) is defined by the model

ẋ1 = −u1 + ε(t)
ẋ2 = u2
u1 $ sign(x1)

u2 $ sign(x1)

(14)

which can be rewritten without convex equations as

ẋ1 = −u1 + ε(t)
ẋ2 = u2
u1 = sign(x1) ∨ (x1 = 0 ∧ u1 ∈ [−1, 1])

u2 = sign(x1) ∨ (x1 = 0 ∧ u2 ∈ [−1, 1])

(15)

Model (7) with respect to the Filippov solution of (8)
can be unambiguously specified using the convex equality
operator in several ways. The following two specifications
have the same solutions forx1 and x2 as the Filippov
solution for (8), but the models below also define solutions
for u1 andu2:









ẋ1
ẋ2
u1
u2









$









−u1 + ε(t)
u2

sign(x1)

sign(x1)









(16)

and
ẋ1 = −u1 + ε(t)
ẋ2 = u2

(

u1
u2

)

$

(

sign(x1)

sign(x1)

) (17)

When solutions foru1 andu2 are not considered relevant,
the model can be simplified to

(

ẋ1
ẋ2

)

$

(

− sign(x1) + ε(t)
sign(x1)

)

(18)

Specification (17) has the following meaning:

ẋ1 = −u1 + ε(t)
ẋ2 = u2

(

u1
u2

)

=

(

sign(x1)

sign(x1)

)

∨ (x1 = 0 ∧

(

u1
u2

)

∈ co(L)),

(19)

where

L =

{(

−1
−1

)

,

(

1
1

)}

denotes the set of limit points. The convex combination
co(L) is a line segment connecting the two limit points, so
thatu1 = u2. Therefore the above specification is equivalent
to

ẋ1 = −u1 + ε(t)
ẋ2 = u2
u1 = u2
u2 $ sign(x1)

(20)

The most important advantage of the new convex equality
operator is that the meaning of a system of DAEs and
convex equations is straightforward and unambiguous. A
second advantage of convex equations is that they can be
used in general (implicit) DAEs and integrate the function-
ality of these DAEs with the Filippov solution concept, and
with much, but not all, of the Utkin solution concept. This,
in principle, enables formal (computer-based) analysis ofa
wide range of hybrid models.

V. OTHER MEANS FOR UNAMBIGUOUS SPECIFICATIONS

This section explores other means to obtain unambiguous
specifications. We first consider the possibility of adopting
the most widely used Filippov solution concept asthe
solution concept. In this way, the semantics of equations
in a language with associated computer-aided analysis tools
could be defined in the Filippov sense. This is a valid option
if only ordinary differential equationṡx = f (x, t) (ODEs)



are considered. For such systems of equations, the Filippov
solution concept unambiguously defines the meaning. In
many cases, however, ODEs are not sufficiently expressive,
and DAEs are required. Consider for example the friction
phenomenon. A driving forceFd is applied to a body on
a flat surface with frictional forceFf (see Fig. 1). When

vFf

FN

Fd

Fig. 1. Body with friction.

the body is moving with velocityv, the frictional force
is given by Ff = µFN, where FN = mg, and µ is the
friction coefficient. When the velocity of the body is zero
and |Fd| ≤ µFN, the frictional force neutralizes the applied
driving force. If we assumeµFN = 1, m = 1, Fd = 0.5, and
introduce a variabley that indicates whetherx is positive,
negative or zero, the model becomes:

ẋ = v

v̇ = 0.5 − Ff
Ff = sign(v)

y = sign(x)

(21)

The Filippov solution concept defines the solution forx and
v of (21) as the solution of

(

ẋ
v̇

)

=

(

v

0.5 − sign(v)

)

in the sense of (2). If initiallyx andv equal 0, the solution
for x andv is x(t) = v(t) = 0. However, since the friction
force Ff is a physically relevant variable, a solution of
(21) should also define the value ofFf (and the value
of y) as a function of time. The only way for model
(21) to be consistent with the solutionx(t) = v(t) = 0
is for Ff = 0.5, which leads to the ambiguity thatFf =

sign(v) = sign(0) = 0.5, whereasy = sign(x) = sign(0) = 0.
Therefore, although the Filippov solution concept itself is
unambiguously defined for ODEs, its application to systems
of differentialalgebraic equations may lead to ambiguities.

Another attempt to avoid ambiguities is to explicitly intro-
duce set valued functions in the language. This would lead
to, for example:

ẋ ∈ − Sign(x) + ε

where the set valued function Sign could be defined as:

Sign(x) =











{−1} x < 0

[−1, 1] x = 0

{1} x > 0

A disadvantage of using set valued functions in formal
models is that syntax / notations are needed to define set
valued functions. This leads to, for example, to two different
sign functions: sign∈ R → R and Sign∈ R → P(R).

Furthermore, the meaning of expressions on set valued
functions, such asf op g for arbitrary set valued functions
f and g and numeric operatorop, then also needs to be
defined. As a conclusion we can state that although the
Filippov solution concept, differential inclusions, and set-
valued functions are convenient for mathematical analysis,
they are inconvenient for modeling and computer aided
analysis.

VI. FORMAL SEMANTICS OFDAES WITH CONVEX

EQUATIONS

In the previous sections, the meaning of the convex equal-
ity operator and convex equations was defined informally.
This section presents a formal semantics that unambiguously
and rigourously defines the meaning of convex equations.
This is especially important for formal analysis of hybrid
systems where the discrete-event behavior consists of more
than just switched equations, but includes, among others,
assignments, communication, parallel and alternative com-
position (see for example [4]).

Differential algebraic equations are defined as predicates
over variablesx, ẋ, y, t, where the values of these variables
can be defined as either (vectors of) reals (x ∈ R

k) or
(vector) functions from time to reals. Consider for example

ẋ = −x + 1 (22)

When the values of variables are considered to be functions
(x, ẋ ∈ T → R

k, T = R≥0), the left and right hand sides
of (22) denote functions. This means that the ‘number’ 1
then denotes the constant function of time that is 1 for all
arguments. Furthermore,ẋ then denotes the functionddt x ,
or function ẋ is implicitly defined asx(t) =

∫ t
0 ẋ(s)ds.

The semantics in this section considers the values of
variables to be (vectors of) reals (x ∈ R

k), instead of (vector)
functions from time to reals. Therefore, solutionsX, Ẋ ∈

T → R
k are defined, such that the function values satisfy

predicate (22) at all points of time:∀t∈T Ẋ(t) = −X (t)+ 1,
andX (t) =

∫ t
0 Ẋ(s)ds. Furthermore, in the formal semantics

a clear distinction is made between variable names and their
values. The essence of this formal semantics is a separation
between:

• The semantics of a single predicate over variables
and dotted variables (derivatives). This semantics is
defined in terms of functions of time for all variables.
Predicates can denote DAEs or convex equations.

• The semantics of a system of several predicates in
terms of the semantics of its individual predicates.

• The semantics of the convex equality operator$. This
semantics defines for which values of its variables a
convex equation (predicate) is satisfied.

A. Equation semantics

Consider a set of variable namesV =

{x1, . . . , xn, ẋ1, . . . , ẋn, y1, . . . , ym, t}, for which we
use the following abbreviationV = {x, ẋ, y, t}. Variable
namet denotes time. Variablesxi , ẋi , yj take values inR



(1 ≤ i ≤ n,1 ≤ j ≤ m), andt takes values inT . The values
of these variables is captured by means of avaluation
σ ∈ 6, where 6 = V → (R∪ ⊥), where ⊥ denotes an
undefined ‘value’.

An equation q ∈ Q, where Q denotes the set of all
differential algebraic equations over variables fromV , is a
predicate over variables fromV . Two types of equations
q are considered: normal equationse = e′, and convex
equationse $ e′, wheree, e′ ∈ Ek , and Ek denotes the set
of k-tuples of real-valued expressions. Elements ofEk are
syntactically represented ask-tuples or ask × 1 matrices.

E.g.

(

ẋ − y
2x

)

∈ E2 and(ẋ − y,2x) ∈ E2 denote the same

2-tuple.
Variables are evaluated by means of valuation functionσ ,

expressions and equations are evaluated by means of evalu-
ation function eval∈ ((Ek ∪ Q)×6) → (Rk ∪{true, false}).

We also define a second evaluation function eval′ ∈ ((Ek ∪

Q) × R
2n+m+1) → (Rk ∪ {true, false}), such that

eval′(ξ, c) = eval(ξ, {x1 7→ c1, . . . , xn 7→ cn ,

ẋ1 7→ cn+1, . . . , ẋn 7→ c2n ,

y1 7→ c2n+1, . . . , ym 7→ c2n+m , t 7→ c2n+m+1}),

where ξ denotes either an expression or an equation, and
c = (c1, . . . ,c2n+m+1) ∈ R

2n+m+1 is called adata point. Fur-
thermore, we defineσ(x), σ (ẋ), σ (y) to denote the tuples
(σ (x1), . . . ,σ (xn)), (σ (ẋ1), . . . ,σ (ẋn)), (σ (y1), . . . ,σ (ym)),
respectively.

Consider for example the set of vari-
ables V = {x1, ẋ1, y1, t}, the valuation σ =

{x1 7→ 1, ẋ1 7→ 6, y1 7→ 4, t 7→ 1}, and data point
c = (1, 6, 4, 1). Then σ(x1) = 1, σ(ẋ) = 6,
eval(x1 + y1 + t, σ ) = eval′(x1 + y1 + t, c) = 6,
eval(ẋ1 = x1 + y1 + t,σ ) = eval′(ẋ1 = x1 + y1 + t,c) = true,
and eval(ẋ1 = x1 + y1, σ ) = eval′(ẋ1 = x1 + y1, c) = false.

The semantics of an equationq with valuationσ (where
σ(ẋ) andσ(y) may be undefined) is defined in terms of a set
of solutions on interval[t0, t1], t0 = σ(t), t1 > t0. A solution
is a pair (X, Y ), where X denotes a solution function for
variablesx andY denotes a solution function for variablesy.
The set of solutions is defined by means of solution function
S ∈ (6 × Q × T ) → P((T → R

n) × (T → R
m)) such that

∀(X, Y ) ∈ S(σ, q, t1) : X (t0) = σ(x) ∧

(∃Ẋ ∈ T → R
n : (∀τ ∈ [t0, t1] : X (τ ) =

∫ t1

t0
Ẋ(s)ds

∧ (Ẋ(τ ), X (τ ), Y (τ ), τ ) |H q )), (23)

wherec |H q, c ∈ R
2n+m+1, means that equationq is satisfied

for data pointc. Therefore,c |H q if and only if eval′(q,c) =

true. Furthermore, the resulting valuationσ ′ is defined as:
σ ′(x) = X (t1), σ ′(y) = Y (t1), andσ ′(t) = t1.

The set of solutions of a system of equationsq1, . . . , qp

is S1 ∩ . . . ∩ Sp, whereSi denotes the set of solutions of
equationqi (i = 1, . . . , p).

B. Convex equation semantics

We define a convex equatione $ e′, (e, e′ ∈ Ek), to be
satisfied for data pointc ∈ R

r , r = 2n + m + 1, if and only
if 0 ∈ cl(co(L(ẽ − ẽ′, c))), so that

eval′(e $ e′, c) = 0 ∈ cl(co(L(ẽ − ẽ′, c))), (24)

where ẽ ∈ R
r → R

k denotes the function obtained by
evaluating expressione for valuess ∈ R

r : ẽ(s) = eval′(e, s).
Furthermore,L( f, c) denotes the set of limit points of
function f in point c, co(L) denotes the smallest convex
set containingL, co∈ P(Rk) → P(Rk), and cl(L) denotes
the closure of setL, cl ∈ P(Rk) → P(Rk).

Informally, without making a distinction between variable
names and their values, the semantics of convex equations
can be defined in an easier way. Informally, a convex
equation can be written asg(ẋ, x, y, t) $ 0, wherex ∈ R

n,
ẋ ∈ R

n , y ∈ R
m , and timet ∈ R≥0. Such a convex equation

is satisfied in pointc ∈ R
2n+m+1 if and only if

0 ∈ cl(co(L(g, c)))

C. Limit points

FunctionL ∈ ((Rr → R
k) × R

r ) → P(Rk) is defined as:

L( f, c) =

{l ∈ R
k | ∃{ci } ∈ 9 : ( lim

i→∞
ci = c, l = lim

i→∞
f (ci )},

where 9 denotes the set of all infinite sequences of
points from R

r , and
{

cj
}

denotes the infinite sequence
c0, . . . , cj , cj+1, . . ., such thatcj ∈ R

r for all j .
A set A ∈P(Rk) is called convex if∀a,b ∈ A : ∀α ∈ [0,1] :

αa + (1 − α)b ∈ A. A geometrical interpretation is that for
any two pointsa and b of A, all points of a line-segment
joining a and b also belong toA. For a finite set of limit
points L, cl(co(L)) = co(L), and co(L) is defined as:

co({l1, . . . , lk}) = { α1l1 + . . . + αk lk |

α1, . . . , αk ∈ R≥0, α1 + . . . + αk = 1, k ≥ 1 }

D. Properties of convex equations

Below three properties of the convex equality operator are
defined:

c |H (v $ e) iff eval′(v, c) ∈ cl(co(L(ẽ, c))) (25)

ẽ − ẽ′ is continuous inc ⇒

(c |H (e $ e′) iff c |H (e = e′)) (26)

wheree, e′ ∈ Ek , andv denotes ak-tuple of variables (e.g.
for k = 3, v could denote(ẋ1, y1, y2), and fork = 1, v could
denoteẋ1).

∀σ∈6,t1∈T : S(σ, ẋ $ ext , t1) = SFilippov(σ, ẋ = ext , t1) (27)

whereext denotes an expression overx andt, such that̃ext is
continuous fort, S denotes the solution function defined in
(23), andSFilippov(σ, ẋ = ext , t1) denotes the set of Filippov
solutions ofẋ = ext for initial stateσ up to time-pointt1.



Property (25) makes it easier to understand the meaning
of the usual form of convex equationsv $ e, wherev is
some variable, ande some expression:v $ e is true in data
point c if and only if the value ofv at data pointc is an
element of the closure of the convex combination of limit
points of functionẽ at data pointc.

Property (26) means that convex equality is the same as
normal equality for values where the left hand expression
minus the right hand expression represents a continuous
function. Stated informally:v $ f (x, ẋ, y, t), wherev is
some variable, has the same meaning asv = f (x, ẋ, y, t)
for all points wheref is a continuous function.

Property (27) shows that convex equations are at least as
expressive as normal equations using the Fillipov solution
concept. Stated informally: the Fillipov solution conceptis
defined only for equations of the forṁx = f (x, t). Such
equations are expressed by means of convex equations as
ẋ $ f (x, t), and the set of solutions is the same.

E. Proofs

To prove Property (25) we use Definition (24):

eval′(v $ e, c)

= 0 ∈ cl(co(L(ṽ − ẽ, c)))

= 0 ∈ cl(co(eval′(v, c) − L(ẽ, c)))

= 0 ∈ cl(co(L(ẽ, c) − eval′(v, c)))

= eval′(v, c) ∈ cl(co(L(ẽ, c)))

To prove Property (26), we need to prove that for all values
c for which functionẽ − ẽ′ is continuous, if eval′(e = e′, c)
is true then eval′(e $ e′, c) is true, and if eval′(e = e′, c) is
false then eval′(e $ e′, c) is false.

If function ẽ is continuous inc then ẽ has one limit point
only in c: L(ẽ, c) =

{

eval′(e, c)
}

. Therefore, with definition
(24) it follows that:

eval(e $ e′, c)

= 0 ∈ cl(co(L(ẽ − ẽ′, c)))

= 0 ∈ cl(co(
{

eval′(e − e′, c)
}

))

= 0 ∈
{

eval′(e − e′, c)
}

If eval′(e = e′, c) is true, then eval′(e − e′, c) = 0, so that
eval′(e $ e′, c) is true. If eval′(e = e′, c) is false, eval′(e −

e′, c) 6= 0, so that eval′(e $ e′, c) is false, which concludes
the proof.

We prove Property (27) in a somewhat informal way,
sinceSFilippov is not formally defined in this paper. We first
consider the points for which̃ext is a continuous function.
In such a case Property (26) together with (23) defines that
S(σ, ẋ $ ext , t1) =S(σ, ẋ = ext , t1) which corresponds to the
Filippov solution. In pointsc for which ẽxt is discontinuous,
Property (25) together with (23) states that each pointc
(c = (X (τ ), Ẋ(τ ), τ )), where X, Ẋ denote the respective
solution functions forx, ẋ of ẋ $ ext satisfies

eval′(ẋ, c) ∈ cl(co(L(ẽxt , c))) (28)

Here, eval′(ẋ, c) denotesẊ(τ ), andL(ẽxt , c) can be sim-
plified to L(ẽxt , (X (τ ), τ )) since ẋ does not occur inext .
We can then write (28) aṡX(τ ) ∈ cl(co(L( f, (X (τ ), τ )))),
where f denotesẽxt , which, under the assumption thatf
is continuous fort, denotes exactly the Filippov solution as
defined by differential inclusion (2) in Section II.

VII. E XAMPLE χ MODEL

This section presents an example of aχ model. The
example is the dry friction example treated in Section V

〈 x, v, Fd, Ff :: real, x = 0, v = 0
| Fd = f (t)
, ẋ = v

, mv̇ = Fd − Ff
, Ff $ µFN sign(v)

〉

where x, v, Fd, Ff denote continuous variables,µ, FN ,
m denote constants,t denotes the time,f denotes some
function of time, andx = 0, v = 0 denote initial values, at
time zero, forx andv.

VIII. C ONCLUSIONS

Dynamical systems written in the form of differential
algebraic equations with discontinuous right hand sides
may result in ambiguities. From a mathematical point of
view this need not be a problem, because a given equation
can be interpreted – possibly in different ways – as a
differential inclusion. This approach is not convenient for
formal languages. In this paper we have introduced convex
equations to model such systems in formal languages, such
as theχ language [4]. The semantics of convex equations
is formally defined.
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