
Formal Semantics of Hybrid Chi

R.R.H. Schiffelers, D.A. van Beek, K.L. Man, M.A. Reniers and J.E. Rooda

Department of Mechanical Engineering and Department of Mathematics and
Computer Science

Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven,
The Netherlands

{R.R.H.Schiffelers,D.A.v.Beek,K.L.Man,M.A.Reniers,J.E.Rooda}@tue.nl

Abstract. The verification formalism / modeling and simulation lan-
guage hybrid Chi is defined. The semantics of hybrid Chi is formally
specified using Structured Operational Semantics (SOS) and a number
of associated functions. The χ syntax and semantics can also deal with
local scoping of variables and/or channels, implicit differential algebraic
equations, such as higher index systems, and they are very well suited
for specification of pure discrete event systems.

1 Introduction

The hybrid χ (Chi) language was originally designed as a modeling and simula-
tion language for specification of discrete-event (DE), continuous time (CT) or
combined DE/CT models (so-called hybrid models). The language and simulator
have been successfully applied to a large number of industrial cases, such as an
integrated circuit manufacturing plant, a brewery, and process industry plants
[1]. For the purpose of verification, the discrete-event part of the language was
mapped onto the χσ process algebra, for which a structured operational seman-
tics was defined, bisimulation relations were derived, and a model checker was
built [2]. In this way, verification of DE χ models was made possible [3].

One of the goals of our research is the development of a hybrid verification
formalism / modeling and simulation language with associated verification and
simulation tools. The recent formalization of the χ language, including the con-
tinuous part, resulted in the χσh

process algebra, described in this paper, and
in a more elegant χ modeling language. The χ language now has the same op-
erators, with the same semantics, as the χσh

formal language. The χ modeling
language extends χσh

with, among others, parameterized process and experi-
ment definitions and instantiations. A straightforward syntactical translation of
χ to χσh

is described in [4].

The χσh
language is a hybrid process algebra, and is thus related to other

hybrid process algebras, such as HyPa [5], the φ-Calculus [6], and hybrid for-
malisms based on CSP [7], [8]. It is also related to hybrid Petri nets [9], hybrid
I/O automata [10], hybrid automata [11], and to work derived from hybrid au-
tomata, such as Charon [12] and Masaccio [13]. The main difference between



the χ formalism and these other formalisms is that χ is overall a more expres-
sive formalism. Higher expressivity means either that certain phenomena can be
modeled in χ whereas they cannot be modeled in some other formalisms, or that
certain phenomena can be modeled more concisely or more intuitively in χ. The
higher expressivity is a result of:

1. The relatively large number of operators dedicated to modeling of discrete-
event behavior. This makes it easy to abstract from continuous behavior
and specify pure discrete-event models, without any continuous variables. In
this respect, χ has much in common with the φ-Calculus [6], and the hybrid
formalisms based on CSP [7], [8].

2. The division of continuous variables into three subclasses. This allows for
specification of steady state initialization, initialization of algebraic vari-
ables, consistent initialization of higher index systems, mode switches ac-
companied by index changes [14], and variables changing dynamically from
differential to algebraic. In HyPa [5], such phenomena can in principle also
be specified. HyPa, however requires a categorization of variables attached
to every equation, whereas in χ this can be specified once, by means of a
scope operator.

3. The scope operator combined with parameterized process definition and in-
stantiation that enable hierarchical composition of processes. In this respect,
the χ language is related to Charon [12], that allows components to be de-
fined and instantiated. Local variables and variable abstraction are present
in many formalisms. In χ, however, the concepts of variable abstraction
and channel abstraction (comparable with action abstraction in other for-
malisms) are integrated in the scope operator, which also provides a local
scope for the three classes of continuous variables and for recursive process
definitions.

Section 2 describes the syntax of the χσh
language. In Section 3, the semantics

of χσh
is formally specified using a structured operational semantics (SOS) and

a number of associated functions. Examples in Section 4 are used to illustrate
the language.

2 Syntax of the χσh
Language

A χσh
process is a triple 〈p, σ, E〉, where p denotes a process term, σ denotes

a valuation, and E denotes an environment. A valuation is a partial function
from variables to values (constants). Syntactically, a valuation is denoted by a
set of pairs {x0 7→ c0, . . . , xn 7→ cn}, where xi denotes a variable and ci its value.
An environment is a five-tuple (EΓ, EJ, EF, EC, ER), where EΓ, EJ, EF denote
sets of “normal” continuous variables, jumping continuous variables, and fixed
continuous variables, respectively. In most models, the normal continuous vari-
ables are used. The behavior of these variables depends on the way they occur in
equations: a normal continuous variable that occurs differentiated or algebraic



(not differentiated) behaves as a fixed continuous variable or as a jumping con-
tinuous variable, respectively (see the semantics of function Ω in Section 3). All
variables must be in the domain of σ. The variables that are not in any of the sets
EΓ, EJ, EF are discrete. In the environment, EC denotes a set of channel labels,
and ER denotes a recursive process definition. A recursive process definition is
a partial function from recursion variables to process terms. Syntactically, a re-
cursive process definition is denoted by a set of pairs {X0 7→ p0, . . . ,Xm 7→ pm},
where Xi denotes a recursion variable and pi the process term defining it. Pro-
cess terms P in χσh

are built from atomic process terms (AP) using operators
for combining them:

AP ::= skip | x := e | m!e | m?x | u | ∆en

P ::= AP | X | i � P | b → P | P B P | P ; P | P ⊕ P
| P [] P | P ‖ P | |[ σ, E | P ]| | ∂(P ) | π(P )

An informal (concise) explanation of this syntax is given below. Section 3 gives
a more detailed account of their meaning.

The process term skip represents an internal action. The value of variables
can be changed instantaneously through assignments. An assignment is a process
term of the form x := e with x a variable and e an expression. In principle,
the continuous variables change arbitrarily over time. Predicates (u) are used
to control these changes, i.e., a predicate restricts the allowed behavior of the
continuous variables. In χ two types of predicates over continuous and discrete
variables are allowed: (1) differential equations of the form rde1 = rde2 where
rde1 and rde2 are real-valued expressions in which the derivative operator may
be used (e.g., ẋ = −x + y), and (2) predicates in which the derivative operator
may not be used (e.g., x ≥ 0, y = 2x + 2, true).

More complex process terms can be obtained by composing process terms
by means of among others sequential composition (;), choice (⊕), alternative
composition ([]), parallel composition ( ‖ ), prefixing a process p term by a reini-
tialization predicate i: i � p, and guarding a process term p by a boolean ex-
pression b: b → p. The process term i � p denotes the process term that behaves
as p starting from the reinitialized state if the reinitialization predicate i can be
satisfied and deadlocks otherwise. The process term b → p denotes the process
term that behaves as process term p in case the boolean expression b evaluates
to true and deadlocks otherwise.

Processes interact either through the use of shared variables or by syn-
chronous point-to-point communication over a channel. By means of m!e, the
value of expression e is sent over channel m. By means of m?x a value is re-
ceived from channel m in variable x. The acts of sending and receiving a value
have to take place at the same moment in time. The encapsulation operator ∂
is introduced to block internal send and receive events in order to assure that
only their synchronous execution takes place.

Some of the atomic process terms in χσh
are delay-able (sending and receiv-

ing), others are not delay-able (skip, assignments). By means of the delay process



term ∆en a process can be forced to delay for the amount of time units speci-
fied by the value of numerical expression en. By means of the maximal progress
operator π, execution of actions can be given priority over passage of time.

The disrupt operator (B) is used for describing that a process is allowed to
take over execution from another process even if that process is not finished yet
(this in contrast with sequential composition). This is useful for describing mode
switches and interrupts/disrupts.

In χ, two operators can be used for the purpose of describing alternative
behaviors; the choice operator (⊕) and the alternative composition operator ([]).
The choice operator allows choice between different kinds of continuous behavior
of a process, where the choice depends on the initial state of the continuous-time
or hybrid process. The alternative composition operator allows choice between
different actions/events of a process, usually between time-events, state-events or
communication events of a discrete-event controller. In such a case, time-passing
should not make a choice. The choice is delayed until the first action is possible.

A scope process term |[ σ, E | p ]| is used to declare a local scope. Here σ
denotes a valuation of local variables, and E denotes a local environment as
defined in the beginning of this section.

The operators are listed in descending order of their binding strength as
follows {�,→, ; ,B},{⊕, [], ‖}. The operators inside the braces have equal binding
strength. In addition, operators of equal binding strength associate to the left,
and parentheses may be used to group expressions.

3 Semantics of the χσh
Language

In this section, the structured operational semantics (SOS) of χσh
is presented.

It associates a hybrid transition system [15] with a χσh
process.

3.1 General Description of the SOS

The main purpose of such an SOS is to define the behavior of χσh
processes at

a certain chosen level of abstraction. The meaning of a χσh
process depends on

the values of the variables and on the environment. A set V of variables, and
a set C of channel labels that may be used in χσh

specifications are assumed.
The values of the variables at a specific moment in time are captured by means
of a valuation, i.e., a partial function from the variables to the union of the set
of values Λ (containing at least the booleans B, and the reals R) and a “value”
⊥ (indicating undefinedness). The set of all valuations is denoted Σ: Σ = V 7→
(Λ ∪ {⊥}). The set T is used to represent points in time; usually T = R≥0. The
set of environments ES is defined as ES = P(V ) ×P(V ) ×P(V ) ×P(C) × RS ,
where P denotes the powerset function and RS = XS 7→ P denotes the set of all
partial functions of recursion variables XS to process terms P . The elements of
an environment E ∈ ES can be obtained by means of five functions: Γ,J ,F ∈
ES → P(V ), C ∈ ES → P(C), and R ∈ ES → RS . The function Γ is defined
as Γ(EΓ, EJ, EF, EC, ER) = EΓ. The functions J , F , C and R are defined in a
similar way to the function Γ. The SOS is chosen to represent the following:



1. instantaneous execution of discrete transitions:

(a) −→ ⊆ (P ×Σ ×ES )× (Aτ ×Σ)× (P ×Σ ×ES ), where Aτ denotes the
actions, and is defined as Aτ = {α(m, c) | α ∈ {isa, ira, ca}, m ∈ C, c ∈
Λ} ∪ {τ}. Here, isa, ira, ca denote action labels for internal send action,
internal receive action and communication action respectively, m ∈ C

denotes a channel, c ∈ Λ denotes a value, and τ is the internal action.

The intuition of a transition 〈p, σ, E〉
a,σ′

−−→ 〈p′, σ′, E〉 is that the process
〈p,σ,E〉 executes the discrete action a ∈ Aτ and thereby transforms into
the process 〈p′, σ′, E〉, where σ′ denotes the accompanying valuation of
the process term p′ after the discrete action a is executed.

(b) −→ 〈X, , 〉 ⊆ (P ×Σ ×ES )× (Aτ ×Σ)× (Σ ×ES ). The intuition of a

transition 〈p, σ,E〉
a,σ′

−−→ 〈X, σ′, E〉 is that the process 〈p, σ′, E〉 executes
the discrete action a and thereby transforms into the terminated process
〈X, σ′, E〉.

2. continuous behavior:  ⊆ (P ×Σ×ES )× ((T 7→Σ)×T )× (P ×Σ×ES ).

The intuition of a transition 〈p, σ, E〉
ς,t
 〈p′, ς(t), E〉 is that the variables in

dom(σ) behave (continuously) according to the trajectories in ς until (and
including) time t and then result in the process 〈p′, ς(t), E〉, where ς(t) ∈ Σ
is the valuation at the end point t of the trajectory ς.

These relations and predicates are defined through so-called deduction rules.
A deduction rule is of the form H

r
, where H is a number of hypotheses separated

by commas and r is the result of the rule. The result of a deduction rule can be
derived if all of its hypotheses are derived. In case the set of hypotheses is empty,
the deduction rule is called a deduction axiom. The notation H

R
, where R is a

number of results separated by commas, is a shorthand for a deduction rule H
r

for each result r ∈ R. In order to increase the readability of the χσh
deduction

rules, some abbreviations are used. The notation

〈p1, σ1, E1〉
a1,σ′

1−−−→

〈 q10

...
q1n

, σ′

1, E1

〉

, · · · , 〈pm, σm, Em〉
am,σ′

m−−−−−→

〈 qm0

...
qmn

, σ′

m, Em

〉

, C

〈r, σ, E〉
b,σ′

−−→

〈 s0

...
sn

, σ′, E

〉

where qji
, si ∈ P ∪ {X} and C denotes an optional hypothesis that must be

satisfied in the deduction rule, is an abbreviation for the following rules (one for
each i):

〈p1, σ1, E1〉
a1,σ′

1−−−→ 〈q1i, σ
′

1, E1〉, · · · , 〈pm, σm, Em〉
am,σ′

m−−−−−→ 〈qmi, σ
′

m, Em〉, C

〈r, σ, E〉
b,σ′

−−→ 〈si, σ
′, E〉

Based on [10] we use the following definitions of operators ∪, �, and ↓ applied
on functions. If f is a function, dom(f) and range(f) denote the domain and



range of f , respectively. If S is a set, f � S denotes the restriction of f to S,
that is, the function g with dom(g) = dom(f)∩S, such that g(c) = f(c) for each
c ∈ dom(g).

If f and g are functions with dom(f) ∩ dom(g) = ∅, then f ∪ g denotes the
unique function h with dom(h) = dom(f) ∪ dom(g) satisfying the condition: for
each c ∈ dom(h), if c ∈ dom(f) then h(c) = f(c), and h(c) = g(c) otherwise.

If f is a function whose range is a set of functions and S is a set, then f ↓ S
denotes the function g with dom(g) = dom(f) such that g(c) = f(c) � S for each
c ∈ dom(g). If f is a function whose range is a set of functions, all of which have
a particular element d in their domain, then f ↓ d denotes the function g with
dom(g) = dom(f) such that g(c) = f(c)(d) for each c ∈ dom(g).

3.2 Deduction Rules

Atomic process terms For the deduction rules of the atomic process terms,
it is assumed that Γ(E), J (E),F(E) ⊆ dom(σ), m ∈ C(E), x ∈ dom(σ), and
σ̄(e), σ̄(en), c ∈ Λ.

Rule 1 states that the skip process term performs the τ action to the termi-
nated process X and has no effect on the valuation or environment.

The execution of the assignment process term x := e (see Rule 2) leads to a
new valuation where all variables are unchanged except for variable x. σ[σ̄(e)/x]
denotes the update of valuation σ such that the new value of variable x is σ̄(e),
which denotes the value of e with respect to σ. Internal send and receive process
terms are intended to be used in parallel composition (see Rule 27). The value of
expression e which is sent via channel m is evaluated in valuation σ (see Rule 3).
The receive process term m?x can receive any value c (see Rule 4).

〈skip, σ, E〉
τ,σ
−−→ 〈X, σ, E〉

1
〈x := e, σ, E〉

τ,σ[σ̄(e)/x]
−−−−−−−→ 〈X, σ[σ̄(e)/x], E〉

2

〈m!e, σ, E〉
isa(m,σ̄(e)),σ
−−−−−−−−−→ 〈X, σ, E〉

3
〈m?x, σ, E〉

ira(m,c),σ[c/x]
−−−−−−−−−−→ 〈X, σ[c/x], E〉

4

The predicate process term can perform a time transition for all trajectories
ς for predicate u as defined by Rule 5.

ς ∈ Ω(σ, Γ(E),J (E),F(E), u, t)

〈u, σ, E〉
ς,t
 〈u, ς(t), E〉

5

Function Ω ∈ Σ × P(V ) × P(V ) × P(V ) × U × T → P(T 7→ Σ), where U
denotes the set of all predicates , returns a set of trajectories from time to a
valuation for the variables, given a valuation representing the current values of
the variables, a set of normal continuous variables, a set of jumping continuous
variables, a set of fixed continuous variables, a predicate and a time point that
denotes the duration of the trajectory. Formally, the function Ω is defined as:



Ω(σ,ΓE , JE ,FE , u, d) =
{ ς ′ ↓ dom(σ)
| ς ′ ∈ T 7→ ((V ∪ V ′) 7→ Λ)
, dom(ς ′) = [0, d], d > 0
, ∀σ′∈range(ς′) dom(σ′) = dom(σ) ∪ {x′ | x ∈ D(u)}
, ∀0≤t≤d, x∈dom(σ)\(ΓE∪JE∪FE) (ς ′ ↓ x)(t) = σ(x)
, ∀x∈(D(u)\JE)∪FE

(ς ′ ↓ x)(0) = σ(x)
, ∀x∈(ΓE∪JE∪FE)\D(u) ς ′ ↓ x is a bounded function that is continuous

almost everywhere.
, ∀x∈D(u) ς ′ ↓ x′ is a bounded function that is continuous

almost everywhere.
, ∀0≤t≤d ς ′(t) |= Tu(u)

, ∀0≤t≤d, x∈D(u) (ς ′ ↓ x)(t) = (ς ′ ↓ x)(0) +
∫ t

0 (ς ′ ↓ x′)(s)ds
}

In lines 5 and 6 of the body of function Ω, it is assumed that the value of x is
defined (σ(x) ∈ Λ). Function D ∈ U → P(V ) extracts the differential variables
from a predicate. E.g. D(x = ẏ) = {y}. Function Tu ∈ U → U ′ replaces every
occurrence of the derivative ẋ of a variable with name x in a predicate u ∈ U by
a fresh variable x′ ∈ V ′ that has the same name as x postfixed with the prime
character. The set V ′ is defined as V ′ = {x′ | x ∈ V }, and U ′ denotes the set
of predicates on variables x ∈ V and x′ ∈ V ′. For example, the application of
function Tu to the equation ẋ = −y + ż gives the equation x′ = −y + z′.

The behavior of each variable x is described by a function of time ς ′ ↓ x. The
behavior of the discrete variables x ∈ dom(σ) \ (ΓE ∪ JE ∪ FE) is specified by
constant functions (∀0≤t≤d (ς ′ ↓ x)(t) = σ(x)). The initial conditions of the non-
jumping differential variables x ∈ D(u) \ JE and the fixed continuous variables
x ∈ FE are specified by (ς ′ ↓ x)(0) = σ(x). The behavior ς ′ ↓ x of the algebraic
variables x ∈ (ΓE ∪ JE ∪ FE) \ D(u) and the behavior ς ′ ↓ x′ of the derivatives
(x′ such that x ∈D(u)) is a bounded function (not set-valued) that is continuous
almost everywhere (except for a set of measure zero). The trajectory ς ′ satisfies
the predicate for all time points of its domain (∀0≤t≤d ς ′(t) |= Tu(u)). The func-
tion ς ′ ↓ x of a differential variable x ∈ D(u) is the integral of the function ς ′ ↓ x′

of its derivative.
For a normal continuous variable x 6∈ (JE ∪ FE), its occurrence in u as dif-

ferential (occurring differentiated in u) or algebraic (not occurring differentiated
in u), determines the behavior of the variable at the beginning of a time tran-
sition. I.e. in time transitions at t = 0, differential variables may not behave
discontinuously (i.e. may not jump so that (ς ′ ↓ x)(0) = σ(x)). Algebraic vari-
ables, on the other hand, may show discontinuous behavior at t = 0, so that for
these variables (ς ′ ↓ x)(0) may be different from σ(x). In some cases, differential
variables may jump. This is, for example, the case in steady state initializa-
tions (ẋ = 0). E.g. in ẋ = −x + 1 ‖ ẋ = 0, where x ∈ JE, (ς ′ ↓ x)(0) jumps to
1, independently of σ(x). The set of fixed continuous variables FE is needed
in cases where algebraic variables need to be initialized. For example consider
ẋ = f(x, y, z) ‖ ẏ = g(x, y, z) ‖ h(x, y, z) = 0. Normally, x and y are initialized, and



the value of z is then determined by the equations. If, for example, the modeler
would prefer to initialize variables x and z, so that the value of y is then deter-
mined by the equations, the sets FE and JE should be such that z ∈ FE and
y ∈ JE . Such initializations are common in, for instance, chemical systems.

ς ∈ Ω(σ, Γ(E),J (E),F(E), true, t)

〈m!e, σ, E〉
ς,t
 〈m!e, ς(t), E〉

6
ς ∈ Ω(σ, Γ(E),J (E),F(E), true, t)

〈m?x, σ, E〉
ς,t
 〈m?x, ς(t), E〉

7

σ̄(en) = 0

〈∆en, σ, E〉
τ,σ
−−→ 〈X, σ, E〉

8
0 < t ≤ σ̄(en), ς ∈ Ω(σ, Γ(E),J (E),F(E), true, t)

〈∆en, σ, E〉
ς,t
 〈∆σ̄(en) − t, ς(t), E〉

9

Rules 6 and 7 state that m!e and m?x can perform any time transition ς, t
that satisfies ς ∈ Ω(σ, Γ(E),J (E),F(E), true, t). The predicate true does not
restrict the continuous behavior of the (continuous) variables.

The delay process term specifies a certain amount of delay. The full amount
of delay does not have to be performed in one transition (see Rule 9). Note that
σ̄(en) denotes the value of expression en with respect to valuation σ before the
delay. In case that the amount of delay is zero, the delay process term terminates
with an internal action as defined by Rule 8. Since there are no rules for the case
that the amount of delay is negative, such a delay leads to deadlock.

Recursion variable Recursion is used among others to model repetition. The
recursion variable X simply behaves as the process term given by R(E)(X).
Here R(E)(X) is the process term that is defined for recursion variable X in
recursive process definition R(E). It is assumed that X ∈ dom(R(E)).

〈R(E)(X), σ, E〉
a,σ′

−−→ 〈
X

p′
, σ′, E〉

〈X, σ, E〉
a,σ′

−−→ 〈
X

p′
, σ′, E〉

10
〈R(E)(X), σ, E〉

ς,t
 〈p′, ς(t), E〉

〈X, σ, E〉
ς,t
 〈p′, ς(t), E〉

11

Reinitialization operator A list of reinitialization equations i determines the
valuation σ+ for the variables occurring with a ‘+’ superscript (e.g. x+) in i
((σ∪σ+) |= i). Function V+(i) extracts the variables with a ‘+’ superscript from
the reinitialization equations i. E.g. V+(x+ − y+ = 1) = {x+, y+}. We assume
that the variables occurring with a superscript ‘+’ are defined in σ. I.e. V+(i) ⊆
{x+ |x ∈ dom(σ)}. Valuation σi denotes a function with dom(σi) = dom(σ),
such that σi(x) = σ+(x+) if x+ ∈ dom(σ+) and σi(x) = σ(x) otherwise. Here x+

denotes the identifier represented by x, postfixed with superscript ‘+’. Process
term i � p can perform an action or time transition if p can perform that
transition from valuation σi after reinitialization.



(σ ∪ σ+) |= i, dom(σ+) = V+(i), 〈p, σi, E〉
a,σ′

−−→ 〈
X

p′
, σ′, E〉

〈i � p, σ, E〉
a,σ′

−−→ 〈
X

p′
, σ′, E〉

12

(σ ∪ σ+) |= i, dom(σ+) = V+(i), 〈p, σi, E〉
ς,t
 〈p′, ς(t), E〉

〈i � p, σ, E〉
ς,t
 〈p′, ς(t), E〉

13

Guard operator In case that the guard b evaluates to false (i.e. σ |= ¬b), there
are no transitions. In case that the guard evaluates to true (i.e. σ |= b), the
guarded process term simply behaves as p.

〈p, σ, E〉
a,σ′

−−→ 〈
X

p′ , σ
′, E〉, σ |= b

〈b → p, σ, E〉
a,σ′

−−→ 〈
X

p′ , σ
′, E〉

14
〈p, σ, E〉

ς,t
 〈p′, ς(t), E〉, σ |= b

〈b → p, σ, E〉
ς,t
 〈p′, ς(t), E〉

15

Sequential composition operator The sequential composition of the process
terms p and q behaves as process term p until p terminates, and then continues
to behave as process term q.

〈p, σ, E〉
a,σ′

−−→ 〈
X

p′
, σ′, E〉

〈p; q, σ, E〉
a,σ′

−−→ 〈
q

p′; q
, σ′, E〉

16
〈p, σ, E〉

ς,t
 〈p′, ς(t), E〉

〈p; q, σ, E〉
ς,t
 〈p′; q, ς(t), E〉

17

Disrupt operator The disrupt operator pB q is introduced to model a kind of
sequential composition, where the process term q may take over execution from
process term p at any moment, without waiting for its termination.

〈p, σ, E〉
a,σ′

−−→ 〈
X

p′
, σ′, E〉

〈pB q, σ, E〉
a,σ′

−−→ 〈
X

p′ B q
, σ′, E〉

18
〈p, σ, E〉

ς,t
 〈p′, ς(t), E〉

〈p B q, σ, E〉
ς,t
 〈p′ B q, ς(t), E〉

19

〈q, σ, E〉
a,σ′

−−→ 〈
X

q′
, σ′, E〉

〈pB q, σ, E〉
a,σ′

−−→ 〈
X

q′
, σ′, E〉

20
〈q, σ, E〉

ς,t
 〈q′, ς(t), E〉

〈pB q, σ, E〉
ς,t
 〈q′, ς(t), E〉

21

Choice operator The effect of applying the choice operator to the process
terms p and q is that the execution of a transition by either one of them results
in a definite choice.



〈p, σ, E〉
a,σ′

−−→ 〈
X

p′
, σ′, E〉

〈p ⊕ q, σ, E〉
a,σ′

−−→ 〈
X

p′
, σ′, E〉, 〈q ⊕ p, σ, E〉

a,σ′

−−→ 〈
X

p′
, σ′, E〉
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〈p, σ, E〉
ς,t
 〈p′, ς(t), E〉

〈p ⊕ q, σ, E〉
ς,t
 〈p′, ς(t), E〉, 〈q ⊕ p, σ, E〉

ς,t
 〈p′, ς(t), E〉

23

Alternative composition operator The action behavior of the alternative
composition operator is equal to that of the choice operator (see Rule 24). The
weak time-determinism principle is adopted for the time transitions. This prin-
ciple means that the passage of time by itself cannot result in making a choice
between two alternatives that can perform that time transition with the same
trajectory ς and the same time step t. This is captured in Rule 26. Rule 25 states
that if one of the two process terms p and q can perform a time transition and
the other cannot, then the alternative composition can also perform that time
transition, but loses the alternative that could not perform a time transition.

〈p, σ, E〉
a,σ′

−−→ 〈
X

p′
, σ′, E〉

〈p [] q, σ, E〉
a,σ′

−−→ 〈
X

p′
, σ′, E〉, 〈q [] p, σ, E〉

a,σ′

−−→ 〈
X

p′
, σ′, E〉

24

〈p, σ, E〉
ς,t
 〈p′, ς(t), E〉, 〈q, σ, E〉 6 

〈p [] q, σ, E〉
ς,t
 〈p′, ς(t), E〉, 〈q [] p, σ, E〉

ς,t
 〈p′, ς(t), E〉
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〈p, σ, E〉
ς,t
 〈p′, ς(t), E〉, 〈q, σ, E〉

ς,t
 〈q′, ς(t), E〉

〈p [] q, σ, E〉
ς,t
 〈p′ [] q′, ς(t), E〉

26

Parallel composition operator The parallel composition of the processes p
and q has as its behavior with respect to action transitions the interleaving of
the behaviors of p and q (see Rule 28). The time transitions of the parallel com-
position of two process terms have to synchronize to obtain the time transition
(with same trajectory ς and the same time step t) of their parallel composition
as defined by Rule 29. The parallel composition allows the synchronization of
matching send and receive actions. A send action isa(m, c) and a receive action
ira(m′, c′) match iff m = m′ and c = c′ (i.e. the channels used for sending and
receiving are same, and also the value sent and the value received are identical).
The result of the synchronization is a communication action ca(m, c) as defined
by Rule 27.



〈p, σ, E〉
isa(m,c),σ′

−−−−−−−→

〈

X

p′

X

p′

, σ′, E

〉

, 〈q, σ′, E〉
ira(m,c),σ′′

−−−−−−−−→

〈

X

X

q′

q′

, σ′′, E

〉

〈p ‖ q, σ, E〉
ca(m,c),σ′′

−−−−−−−→

〈

X

p′

q′

p′ ‖ q′

, σ′′, E

〉

, 〈q ‖ p, σ, E〉
ca(m,c),σ′′

−−−−−−−→

〈

X

p′

q′

q′ ‖ p′

, σ′′, E

〉
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〈p, σ, E〉
a,σ′

−−→ 〈
X

p′
, σ′, E〉

〈p ‖ q, σ, E〉
a,σ′

−−→ 〈
q

p′ ‖ q
, σ′, E〉, 〈q ‖ p, σ, E〉

a,σ′

−−→ 〈
q

q ‖ p′
, σ′, E〉
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〈p, σ, E〉
ς,t
 〈p′, ς(t), E〉, 〈q, σ, E〉

ς,t
 〈q′, ς(t), E〉

〈p ‖ q, σ, E〉
ς,t
 〈p′ ‖ q′, ς(t), E〉

29

Scope operator By means of the scope operator, local variables (optionally
with an initial value) and a local environment can be introduced in a χσh

pro-
cess. The application of the scope operator to a process p results in the be-
havior of the process p after the addition of the local variables (in fact the
valuation for the local variables) to the global valuation (µ(σ, σs)), and the ad-
dition of the local environment to the global environment (µE(E, Es)). Function
µ ∈ Σ ×Σ → Σ merges two valuations. If σ, σ′ ∈ Σ, µ(σ, σ′) denotes the valua-
tion σ′′ with dom(σ′′) = dom(σ) ∪ dom(σ′), such that ∀x∈dom(σ′) σ′′(x) = σ′(x)
and ∀x∈dom(σ)\dom(σ′) σ′′(x) = σ(x). Function µE ∈ ES × ES → ES merges two
environments. It is defined as µE(E, Es) = (Γ(E)∪Γ(Es),J (E)∪J (Es),F(E)∪
F(Es),C(E) ∪ C(Es), µR(R(E),R(Es))). Function µR ∈ RS ×RS → RS merges
two recursive process definitions. If R, R′ ∈ RS , µR(R, R′) denotes the re-
cursive process definition R′′, with dom(R′′) = dom(R) ∪ dom(R′) such that
∀x∈dom(R′) R′′(x) = R′(x) and ∀x∈dom(R)\dom(R′) R′′(x) = R(x).

The scope operator is also used for abstraction: action abstraction and data
abstraction. The skip and assignment actions are internal (τ) actions already. The
internal send and receive actions on a local channel are encapsulated (blocked).
Therefore, they need not be abstracted. The only action that needs to be ab-
stracted by substitution of a τ action (action abstraction) is the communica-
tion action ca(m, c) via a local channel m ∈ C(Es) (see Rule 30). Function
ch ∈ Aτ → C ∪ {⊥} extracts the channel label from an action. It is defined
as ch(α(m, c)) = m and ch(τ) =⊥.

The changes of local variables are abstracted (made invisible) outside
the scope operator, by removing them from the transition arrow. For ac-
tion transitions, data abstraction is defined using σµs, where σµs denotes
µ(σ, σ′ � (dom(σ) \ dom(σs))), as shown in rules 30 and 31. The changed val-
uation of local variables is stored in the local valuation (σ′ � dom(σs)).



For time transitions, data abstraction is defined using ςσ, where ςσ de-
notes ς ↓ (dom(σ) \ dom(σs)) ∪ ςcorr. The correction function ςcorr spec-
ifies the continuous behavior of the variables in the start valuation
that were redefined in the local valuation σs. It is defined as ςcorr ∈
Ω(σ � dom(σs), Γ(E) ∩ dom(σs),J (E) ∩ dom(σs),F(E) ∩ dom(σs), true, t) (see
Rule 32).

〈p, µ(σ, σs), µE(E,Es)〉
ca(m,c),σ′

−−−−−−−→ 〈
X

p′
, σ′, µE(E, Es)〉, m ∈ C(Es)

〈|[ σs, Es | p ]|, σ, E〉
τ,σµs

−−−→ 〈
X

|[ σ′ � dom(σs), Es | p′ ]|
, σµs, E〉

30

〈p, µ(σ, σs), µE(E,Es)〉
a,σ′

−−→ 〈
X

p′ , σ
′, µE(E, Es)〉, ch(a) 6∈ C(Es)

〈|[ σs, Es | p ]|, σ, E〉
a,σµs

−−−→ 〈
X

|[ σ′ � dom(σs), Es | p′ ]|
, σµs, E〉

31

〈p, µ(σ, σs), µE(E, Es)〉
ς,t
 〈p′, ς(t), µE(E, Es)〉

〈|[ σs, Es | p ]|, σ, E〉
ςσ ,t
 〈|[ ς(t) � dom(σs), Es | p′ ]|, ςσ(t), E〉
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Encapsulation operator The behavior of the encapsulation of a process ∂(p)
is the same as the behavior of the process argument p with the restriction that
only actions from the set Ax = {ca(m, c) | m ∈ C, c ∈ Λ} ∪ {τ} can be executed
(see Rule 33). In this way, internal send actions isa(m, c) and internal receive
actions ira(m, c) are blocked, and only communication actions ca(m, c) and τ
actions are allowed. Encapsulation has no effect on time transitions, as defined
by Rule 34.

〈p, σ, E〉
ax,σ′

−−−→ 〈
X

p′
, σ′, E〉, ax ∈ Ax

〈∂(p), σ, E〉
ax,σ′

−−−→ 〈
X

∂(p′)
, σ′, E〉

33
〈p, σ, E〉

ς,t
 〈p′, ς(t), E〉

〈∂(p), σ, E〉
ς,t
 〈∂(p′), ς(t), E〉

34

Maximal progress operator The maximal progress operator gives action
transitions a higher priority than time transitions. Rule 35 states that action
behavior is not affected by maximal progress. Time transitions are allowed only
if it is not possible to perform any action transitions as defined by Rule 36.

〈p, σ, E〉
a,σ′

−−→ 〈
X

p′ , σ
′, E〉

〈π(p), σ, E〉
a,σ′

−−→ 〈
X

π(p′)
, σ′, E〉

35
〈p, σ, E〉

ς,t
 〈p′, ς(t), E〉, 〈p, σ, E〉 9

〈π(p), σ, E〉
ς,t
 〈π(p′), ς(t), E〉

36

For all χσh
operators, strong (state-based) bisimulation has been proven to

be a congruence.



4 Examples

The two examples in this section are related to the kind of hybrid systems
that can be modeled by means of hybrid automata and related formalisms. This
makes it easier to become familiar with χσh

specifications. In practice, however, a
modeler would specify models in the χ language, which has a more user-friendly
syntax for the scope operator.

4.1 Dry Friction Phenomenon

A driving force Fd is applied to a body on a flat surface with frictional force
Ff (Figure 1). When the body is moving with positive velocity v, the frictional
force is given by Ff = µFN, where FN = mg. When the velocity of the body is
zero and |Fd| < µ0FN, the frictional force neutralizes the applied driving force.
Instead of locations (hybrid automaton), χ uses recursion variables to specify the

F
d

F
N

F
f

Fig. 1. Dry friction

modes “neg”, “stop”, and “pos”. The mode “stop” requires that v is initially
0. The mode “stop” is maintained for as long as the parallel composition (v =
0 → v = 0 ‖ − µ0FN ≤ Fd ≤ µ0FN) can delay. Otherwise, the process term
(Fd ≤ −µ0FN → neg ⊕ Fd ≥ µ0FN → pos) after the disrupt operator B takes
over. The choice operator ⊕ specifies that either process term Fd ≤−µ0FN → neg
or Fd ≥ µ0FN → pos is executed. Therefore, depending on the value of Fd, either
the process term specified by recursion variable (mode) neg or pos is executed.
The mode “pos” is maintained until condition v ≤ 0∧Fd < µ0FN becomes true.
In χ, action transitions have priority over time transitions. Therefore, when v ≤ 0
and Fd < µ0FN, the process term skip is enabled and is immediately executed.
Subsequently the mode “stop” is executed again. Symbols m, FN , µ0 , µ, x0 and
v0 are constants.

〈 π(|[ ∅, ( ∅, ∅, ∅, ∅
, { stop 7→ (v = 0 → v = 0 || −µ0FN ≤ Fd ≤ µ0FN)

B( Fd ≤ −µ0FN → neg ⊕ Fd ≥ µ0FN → pos )
, pos 7→ (v ≥ 0 || mv̇ = Fd − µFN)

B (v ≤ 0 ∧ Fd < µ0FN → skip; stop)
, neg 7→ (v ≤ 0 || mv̇ = Fd + µFN)

B (v ≥ 0 ∧ Fd > −µ0FN → skip; stop)
}



)
| Fd = sin(t) ‖ ṫ = 1 ‖ ẋ = v ‖ (neg ⊕ stop ⊕ pos)
]|)

, {t 7→ 0, x 7→ x0, v 7→ v0, Fd 7→⊥}, ({t, x, v, Fd}, ∅, ∅, ∅, ∅)
〉

4.2 Railroad Gate Controller

In [16] a railroad gate controller is modeled using a hybrid automaton. When a
train approaches the gate the controller must close the gate. The controller has a
reaction delay of α time units. After the train has passed the gate the controller
must open the gate. The purpose of the model is to determine the value of α, to
ensure that the gate is always fully closed when the train is at a certain distance
from the gate.

A formal specification of the railroad gate controller using χσh
is given below.

Channels approach , exit , open and close are used for pure synchronization, no
data is communicated. The train, gate and controller are modeled using different
scopes. The scope process term modeling the train consists of a parallel compo-
sition of an infinite loop (∗(. . .)) and an equation (ẋ = v). The velocity of the
train can be any function of time between 40 and 50. The process waits until the
train has reached position x = 1000 and then synchronizes with the controller
(approach !). The train is now approaching the gate. If the train has reached the
exit position x = 2100, the train synchronizes with the controller, the position
x of the train is reset to zero (x := 0), and the loop is re-executed. The train
is now past the gate. The scope process term modeling the gate consists of a
parallel composition of an infinite loop and an equation (φ̇ = n). The infinite
loop is an alternative composition of four process terms. The first process term
waits until the gate is closed (φ = 0) and then turns off the gate. The second
process term waits until the gate is open (φ = 90). The third and fourth process
term wait for synchronization with the controller in order to open or close the
gate (open ? and close ? respectively). The four process terms delay in parallel
until one of the four events (∇φ ≤ 0, ∇φ ≥ 90, open ?, close ?) takes place. The
controller consists of an infinite loop. It tries to synchronize with the train, in
order to open or close the gate (approach ? and exit ? respectively). The constant
α is used to model the reaction delay in the controller. After α time units (∆α)
the controller synchronizes with the gate, and the loop is re-executed. In the
specification, some abbreviations are used which are listed in the table below.

Abbreviation Meaning

∗ p |[ ∅, (∅, ∅, ∅, ∅, {X 7→ p; X}) | X ]|
∇x ≥ e x ≤ eB (x ≥ e → skip)
∇x ≤ e x ≥ eB (x ≤ e → skip)

m! m!true

m? |[ {x 7→⊥}, (∅, ∅, ∅, ∅, ∅) | m?x ]|



〈 π(∂( |[ {v 7→⊥}, ({v}, ∅, ∅, ∅, ∅)
| ẋ = v || ∗( (40 ≤ v ≤ 50 [] ∇x ≥ 1000); approach !

; (30 ≤ v ≤ 50 [] ∇x ≥ 2100); exit !; x := 0
)

]|
|| |[ {n 7→ 0}, (∅, ∅, ∅, ∅, ∅)

| φ̇ = n || ∗( n < 0 → (∇φ ≤ 0; n := 0)
[] n > 0 → (∇φ ≥ 90; n := 0)
[] open ?; n := 9
[] close ?; n := −9
)

]|
|| ∗( approach ?; ∆α; close ! [] exit ?; ∆α; open ! )
))

, {x 7→ 0, φ 7→ 90}, ({x, φ}, ∅, ∅, {approach , exit , open , close}, ∅)
〉

5 Conclusions and Future Research

The semantics of the hybrid χ language has been formally specified using a rel-
atively small set of deduction rules and associated functions. The language is
highly expressive and can be used to specify a wide range of systems, includ-
ing pure discrete-event systems, systems with local scoping of variables and/or
channels, and systems of implicit algebraic differential equations. Future work
entails the extension of the discrete-event χ verification tool to enable verifica-
tion of hybrid models. Furthermore, the hybrid χ simulator will be redesigned
to correspond to the new syntax and formal semantics.
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