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Abstract

A compositional interchange format for hybrid systems is defined in terms of an interchange au-
tomaton, allowing arbitrary differential algebraic equations, including fully implicit or switched
DAEs, discrete, continuous and algebraic variables, that can be internal or external, urgency con-
ditions, and operators for parallel composition, action hiding, variable hiding and urgent actions.
Its compositional semantics is formally defined in terms of a hybrid transition system. This allows
development of transformations to and from other formalisms that can be proven to preserve es-
sential properties, and it allows a clear separation between the mathematical meaning of a model
and implementation aspects such as algorithms used for solving differential algebraic equations.1

1Work partially done in the framework of the HYCON Network of Excellence, contract number FP6-IST-511368
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1 Introduction
Our intention is to establish inter-operability of a wide range of tools by means of model transfor-
mations to and from a compositional interchange format that is defined in terms of an interchange
automaton. The domain of the interchange automaton format consists of languages and tools from
computer science and from dynamics and control for modeling, simulation, analysis, controller
synthesis, and verification in the area of hybrid and timed systems. The purpose of an interchange
format is to avoid the implementation of many bi-lateral translators between specific formalisms.
Instead, the translation from a formalism A to a formalism B is divided in two steps: first, the
model in formalism A is translated into a representation (model) in the interchange automaton
format, then, this representation is translated into a model in formalism B [32].
Our main requirements for the interchange format are summarized below. A more detailed dis-
cussion of these requirements follows in Sections 2 and 3.

1. It should have a formal and compositional semantics, based on (hybrid) transition systems,
and allow property preserving model transformations.

2. Its concepts should be based on mathematics, and independent of implementation aspects
such as equation sorting, and numerical equation solving algorithms.

3. It should support arbitrary differential algebraic equations (DAEs), including fully implicit
equations, higher index systems, algebraic loops, steady state initialization, switched sys-
tems such as piecewise affine systems, and DAEs with discontinuous right hand sides.

4. It should support a wide range of concepts originating from hybrid automata, including
different kinds of urgency, such as ‘urgency predicates’, ‘deadline predicates’, ‘triggering
guard semantics’, and ‘urgent actions’.

5. It should support parallel composition with synchronization by means of shared variables
and shared actions.

6. It should support hierarchy and modularity to allow the definition of parallel modules and
modules that can contain other modules (hierarchy), and to allow the definition of variables
and actions as being local to a module, or shared between modules.

Other work on interchange formats for hybrid systems has been carried out in different projects:
in the MoBIES project, the Hybrid System Interchange Format (HSIF) [27] is defined; in [30]
an ‘abstract semantics’ of an interchange format based on the Metropolis meta model is defined;
this work is a continuation of the COLUMBUS project [10]; and in the HYCON NoE [21],
an interchange format for switched linear systems [9] in the form of piecewise affine systems
(PWAs) is defined.
In HSIF, a network of hybrid automata is used for model representation. The network behaves as
a parallel composition of its automata, without hierarchy or modules. Variables can be shared or
local, and the communication mechanism is based on broadcasting of boolean ‘signals’, where
signals are partitioned in input and output signals. Each signal is required to be either a global
input to the network or to be modified by exactly one automaton. The semantics is defined only
for ‘acyclic dependency graphs’ with respect to the use of signals. The time dependent behavior
is specified by means of ordinary differential equations (ODEs), together with algebraic relations
of the form x = f (x1, . . . , xn), and invariants. The equation ẋ = 0 is assumed for each shared
variable. Circular dependencies of the algebraic equations, i.e. algebraic loops, are not allowed.
To provide for ‘synchronous execution’ of discrete steps, each automaton has a default transition.
There are no algebraic variables, and there is no form of urgency predicate or urgent action.
Execution of the network is defined as an alternating sequence of continuous steps followed by
discrete steps, where each discrete step of the network is the result of a sequence of discrete
steps of each of the automata taken in an order that respects automata dependencies [27]. The
interchange automaton format defined in this article aims to be more general than HSIF, and does

1



not incorporate tool limitations, such as restrictions on circular dependencies or algebraic loops,
in its compositional formal semantics.
The ‘abstract semantics’ presented in [30], takes implementation considerations into account,
such as equations sorting, iterations that may be required for state-event detection, and iterations
for reaching a fixed-point in case of algebraic loops. The semantics is defined in terms of func-
tions and algorithms such as init, markchange, and solve. This is different from the compositional
formal semantics as defined in Section 5, which aims at defining the mathematical meaning of
interchange automata, independently of implementation aspects such as equation sorting or state-
event detection. For example, the semantics defines the mathematical meaning of a switched
system of equations, such as a PWA system, but an implementation may choose to implement
such switching behavior with or without state-event detection.
A transformation from the PWA-based interchange format [9] to the interchange automaton for-
mat will be developed. Based on this transformation, several tools, based on among others PWA,
HYSDEL, MLD (see [17] for an overview relating these languages) can then be connected to the
interchange automaton format.
In principle, an interchange automaton can be specified in three different formats: First, an ab-
stract format. The purpose of this format is to facilitate definition of the formal semantics. This
is the format defined in this article. Second, a concrete format. The purpose of this format is to
provide user friendly syntax, that can be used for modeling directly in the interchange automaton
format. Third, a transfer format. The purpose of this format is to facilitate the file generation and
parsing process. This format can, for example, be specified in an extensible markup language
(XML) format, that is supported by means of libraries in many different languages.
The remainder of this article is organized as follows: Section 2 discusses the importance of
a compositional formal semantics, Section 3 discusses the concepts present in the interchange
automaton format, Sections 4 and 5 define the syntax and semantics of interchange automata, re-
spectively, Section 6 shows how the operators of interchange automata can be eliminated resulting
in atomic interchange automata, and Section 7 presents concluding remarks.

2 Importance of a compositional formal semantics
A formal semantics defines the mathematical meaning of a valid model given in the interchange
automaton format, i.e., it defines all possible behaviors of the model for certain initial conditions.
A formal semantics allows a clear distinction between the mathematical meaning of a model and
implementation aspects. It defines a standard against which implementations, such as simulation
or verification implementations can be evaluated. In order to use the interchange automaton
format for verification purposes, translations from models to the interchange automaton format,
and vice versa, should preserve essential properties. I.e., verification results obtained for a derived
model should also be valid for the original model specified in another formalism.
The different formalisms may have different features and semantics, complicating translations
between them. In order to keep the translations between the interchange automaton format and
the different formalisms manageable, in terms of complexity, it is essential that the interchange
automaton format allows transformations of (parts of) specifications in the interchange automaton
format itself. For instance formalism A could use a triggering guard semantics (see Section 3),
no invariants, and hierarchy. Formalism B could use invariants, no concepts for urgency, and no
hierarchy. The transformations of the triggering guards to invariants, and flattening of the model
should all take place in the interchange automaton format.
To allow proof of equivalence (see Section 5.3) between the transformed model in the interchange
automaton format and its original, it is essential that the semantics of the interchange automaton
format is compositional, i.e., that the notion of equivalence is a congruence for all operators of the
interchange automaton format. Parts of a model can then be replaced by equivalent parts without
changing the meaning of the model.
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For simulation of hybrid systems based on nonlinear DAEs, usually numerical solvers are used [8].
Numerical solvers can be parameterized with, among others, different settings for the relative
and/or absolute accuracies. This means that simulation of the same model using different simula-
tors, or using different solvers or different parameter settings for the same simulator, will usually
lead to different results. In such cases, there will obviously be a difference between the formal
semantics, which mathematically defines the allowed behaviors of the model, and the result of
a simulation run, which gives a numeric approximation of one of the allowed behaviors. The
formal semantics then defines the ‘reference behavior’ which can be used to evaluate the quality
of the numeric approximation provided by a simulator.
The fact that a formal semantics defines the mathematical meaning of a model is also useful
when dealing with advanced simulators for complex nonlinear DAEs. Several techniques exist
for efficient simulation of such DAEs, such as ordering of the equations in block lower triangular
structure, tearing, and reduction of the number of equations and unknowns by symbolic manipu-
lation and solving [26]. Clearly, these techniques for improving simulation efficiency should not
affect the simulation results. A formal semantics unambiguously defines the mathematical mean-
ing of a model, and is thus completely independent of techniques used by advanced simulation
algorithms.

3 Concepts in the interchange automaton format
3.1 Differential algebraic equations

Modeling of physical systems, such as mechanical or chemical systems frequently leads to DAEs.
Algebraic constraints can also be the result of stateless components such as proportional con-
trollers. DAEs can be modeled and simulated using languages such as Modelica [35] and Ecosim-
Pro [11]. DAEs can be specified in the invariants of an interchange automaton, since such invari-
ants are predicates over all variables, including the dotted variables. Flow clauses are supported
for reasons of compatibility with existing hybrid automata. The reason for not enforcing a sep-
aration between invariants (over non-dotted variables) and flow clauses (over dotted variables),
as in existing hybrid automata, is that such a separation is absent in the mathematical theory
of dynamical systems, including control theory. In many cases, fully implicit DAEs, such as
f(ẋ, x, y, t) = 0, cannot even be rewritten to a form where the algebraic constraints and the dif-
ferential constraints are separated, such as the semi-explicit form ẋ = g(x, y, t), h(x, y, t) = 0,
where x and y are the continuous and algebraic variables, respectively. The generalized invariant
allows us to consider the four expressions x = 1 ∧ x = 2, ẋ = 1 ∧ ẋ = 2, ẋ = y ∧ ẋ = 2y ∧ y = 1
and ‘false’ to be equivalent (bisimilar): no behavior is possible.
The initialization clause of the interchange automaton is also defined as a predicate over all vari-
ables, including the dotted variables. This allows more general initializations than usually allowed
in hybrid automata. In particular, steady state initialization, as available in Modelica and Ecosim-
Pro, is supported. E.g. by defining ẋ = 0 as initialization predicate for a location with invariant
f(ẋ, x, y, t) = 0, the initial state is defined as the ‘steady state’, that is the solution of the set of
DAEs such that all derivatives are zero: f(0, x, y, t) = 0.

3.2 Discrete, continuous and algebraic variables

The interchange automaton defines three classes of variables: the discrete and continuous vari-
ables, and in addition the algebraic variables. The differences are as follows: Continuous vari-
ables are the only variables for which dotted variables (derivatives) can be used in models. The
values of discrete variables remain constant when model time progresses, the values of continuous
variables may change according to a continuous function of time when model time progresses,
and the values of algebraic variables may change according to a discontinuous function of time.
Finally, there is a difference between the different classes of variables with respect to how the
resulting values of the variables in a transition relate to the starting values of the variables in the
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next transition. The resulting value of a discrete or continuous variable in a transition always
equals its starting value in the next transition. For algebraic variables there is no such relation,
because algebraic variables are not part of the state.
The state of an interchange automaton consists of, among others, the interchange automaton it-
self, and a valuation of the discrete and continuous variables (see Section 5 for a more precise
definition of the state). The values of the dotted variables and the algebraic variables are not
contained in the state. The reason for this is that the state of an interchange automaton represents
all information needed to determine future behavior, i.e., the state of a system makes the sys-
tem’s history irrelevant. The dotted and algebraic variables are not needed in the state, because
their values are determined completely by the interchange automaton: in particular by the initial
conditions, the flow conditions, the invariants and the jump predicates as defined in Section 4.
In most languages that allow (implicit) DAEs, such as Modelica [35], EcosimPro [11], and
Simulink [34], the distinction between continuous and algebraic variables is implicitly made by
considering all continuous variables that do not occur differentiated as algebraic. EcosimPro also
implicitly makes the distinction between discrete and continuous variables: variables of type real
that occur differentiated are continuous (unless the variable is prefixed by the DISCR qualifier,
in which case it is discrete). Variables of other types (such as integer, boolean and string) are
discrete.

3.3 Automata related concepts

Many different hybrid automaton definitions exist. Some definitions require solutions for the
continuous variables to be differentiable functions, e.g. in [19, 1]. Other definitions allow the
more general case of piecewise differentiable or piecewise continuous functions, e.g. in [33].
Such restrictions can be realized in the interchange automaton format by means of the parameters
F and G as defined in Section 5. In [24], for each variable a ‘dynamic type’ can be defined.
However, since we did not find such expressivity in tools, the interchange automaton format
allows the definition of the dynamic type for the algebraic and continuous variable classes, not
for each individual variable.
With respect to the meaning of jump predicates, that define the behavior of the variables in action
transitions, differences also occur: in [19] the variables can in principle perform arbitrary jumps
unless restricted by the jump predicate, in [20], variables in principle remain unchanged unless
changes are enforced by the jump predicate by means of primed variables. The first behavior is
obtained by an interchange automaton that defines the set of jumping variables J (see Section 5)
at each edge to be equal to the set of all variables. The second kind of behavior is obtained by
defining the set J as the union of all primed variables of the jump predicate. The specification
of a set of jumping variables and a jump predicate for each edge of an interchange automaton is
based on [1].
The interchange automaton format is expressive enough to deal with verification tools such as
PHAVER [13] and HYTECH [20]. The behavior of the algebraic variables from the interchange
automaton is related to the external variables from the semantical hybrid I/O automaton defined
in [24]. In this I/O automaton, the external variables are also not part of the state, and they can
have a dynamic type that allows discontinuous trajectories. The state is defined by the values
of the internal variables, and discrete transitions (action transitions) are defined only on internal
variables. The interchange automaton format can express this as a special case, since the differ-
ent classes of variables, action transitions, and hiding/abstraction are orthogonal concepts in the
interchange automaton format.

3.4 Urgency

The concept of urgency allows the passing of time up to a certain point. There are essentially two
different kinds of urgency:

1. Urgency that is defined for an atomic automaton by means of one or more predicates. Such
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predicates can be associated to a location, or to outgoing edges of the location.

2. Urgency that is defined as an operation on a composition of one or more automata. Such
an operation defines a set of actions as urgent for the composition. The operation allows
the passing of time up to the point when one or more of the urgent actions can be executed.

The first kind of urgency is defined in many different forms. The tcp (time can progress) predi-
cate [29], is a predicate over the variables of the automaton and time. The predicate is associated
to a location. It allows passing of time in a location for as long as the predicate is true. Related
to the tcp predicate is the stopping condition [14], which is a predicate on the variables of the
automaton, also associated to a location, and which allows passing of time in a location for as
long as the stopping condition is false, or in other words, until the time-point when the stopping
condition is true. Deadline predicates [7] and urgency predicates [14] are associated to the edges
of an automaton. Deadline predicates allow passing of time in a location until the time-point that
one or more deadline predicates of the outgoing edges of the location become true. Whenever a
deadline predicate of an edge becomes true, the guard associated to that edge must also be true:
the deadline predicate must imply the guard. Urgency predicates are similar to deadline predi-
cates; the only difference is that they do not have the restriction that the urgency predicate should
imply the guard. Urgency predicates allow passing of time in a location until the point of time
that for one or more of the outgoing edges, the guard and the urgency predicate are both true.
Restricting a tcp predicate as a predicate over the variables of an automaton makes it equal to the
negation of a stopping condition. Deadline predicates and urgency predicates are less expressive.
They can both be expressed in terms of stopping conditions, see [14], or as tcp predicates. E.g.
the stopping condition of a location corresponds to the disjunction of all deadline predicates of
the outgoing edges of the location. Note that a flow condition which is false in a hybrid automaton
is equivalent to a stopping condition that is true, or a tcp predicate that is false. The interchange
automaton format adopts stopping conditions, which we refer to as urgency conditions.
In simulation languages, such as Modelica, EcosimPro, and HyVisual, usually a triggering guard
semantics is used, meaning that the passing of time in a location is allowed until the time-point
that any of the guards of the outgoing edges becomes true. This is equivalent to a stopping
condition associated to the location that is the disjunction of the guards of all outgoing edges.
The second kind of urgency, as for example defined in [6] and [3], is often available with restric-
tions only. E.g. in HYTECH, edges can be defined as urgent. The composition of urgent actions is
required to be well-formed: ‘whenever two components synchronize on a label, if one transition
is urgent then the other must either be urgent, or have a jump condition expressible as a guarded
command with its guard being either the predicate true or the predicate false’ [20]. A second
restriction is that ‘if there exists an urgent transition from a location v to a location v′, then for
all valuations satisfying the invariant of v, an urgent transition to v′ should exist’. The timed
automaton language UPPAAL [23] appears to define urgent communication by allowing the def-
inition of channels either as urgent or non-urgent, but the semantics can be defined in terms of
stopping conditions: time can pass in a location for as long as 1) none of its edges synchronize via
an urgent channel, and 2) for all edges that synchronize via an urgent channel the guards remain
false [36].
The interchange automaton format defines the second kind of urgency by means of the urgent
action operator. Note that defining this kind of urgency by means of directly referring to the
guards of actions may lead to congruence problems, as described in [5]. There, replacing a part
of a specification by another part with the same behavior may lead to different behavior of the
complete system.

3.5 Synchronous systems related concepts

An overview of the synchronous approach, as adopted by the three synchronous languages Es-
terel, Lustre and Signal, is given in [4]. Essential to this approach is the division of time into dis-
crete instants and the distinction of inputs and outputs of a system. Execution of a synchronous

5



model is, in principle, a deterministic transformation, at each time-instant, of the values for each
of the inputs and internal state, to the values of the outputs and the internal state. A characteristic
difference with hybrid automaton related formalisms is the semantics of parallel composition.
Hybrid automaton related formalisms usually have an interleaving, non-deterministic semantics
for the execution of actions. Synchronous languages in principle define the behavior of parallel
composition of input/output systems as the (deterministic) conjunction of the behaviors. In prac-
tice, however, such synchronous behavior is difficult to achieve, and many different semantics
exist, ranging from true synchronous behavior to full interleaving. Interaction in synchronous
systems is usually based on shared variables and/or ‘signal broadcasting’. In [22], a formal se-
mantics of timed and hybrid statecharts is presented. Signal broadcasting is formally defined
by means of ‘volatile variables’. In Harel’s Statecharts [16], the semantics is defined in terms
of ‘steps’ and ‘supersteps’. In other languages these may be referred to as ‘microsteps’ and
‘steps’. Many, possibly conflicting, definitions of microsteps based semantics exist [4]. The
comparative study [37] discusses several issues of the Statechart semantics and treats more than
twenty Statechart variants. Other languages that have been influenced by synchronous systems
are Masaccio [18] and, recently also Charon [2]. Because of the many different ways of dealing
with ‘synchronous behavior’, the synchronous approach needs to be studied in more detail before
incorporating it in the interchange automaton.
The synchronous approach is to some extent already present in the interchange automaton, since
the parallel composition of interchange automata takes as the behavior for time transitions the
conjunction of the behaviors of the individual automata. Furthermore, the interchange automaton
shares the substitution principle [15] with Lustre: an equation x = e, where x is a variable and e
an expression, defined in an invariant, allows the substitution of x by its defining expression ev-
erywhere in the scope of this definition. This is referred to as the consistent equation semantics in
[3]. Furthermore, each connection between an input and output of synchronous models, includ-
ing Simulink [34] blocks, can be modeled by means of an algebraic variable in an interchange
automaton. The function f of the block, say y = f (x,u), where x is the state, y is the output, and
u is the input, is modeled by means of an equation in the invariant of the interchange automaton.

4 Abstract syntax of interchange automata
Notation 4.1. The following notations are defined:

• A set V of variables and a set of action labels L, which does not include the predefined
non-synchronizing action τ , are assumed. The set Lτ denotes the set L ∪ {τ }.

• For a set of variables S ⊆ V , Ṡ = {ẋ | x ∈ S} denotes the set of dotted variables.

• For a set of variables S ⊆ V , Pred(S) denotes the set of all predicates over variables from
S.

• f : A 7→ B and g : A → B define a partial function f and a total function g, both with
domain A and range B.

Definition 4.2 (Atomic Interchange Automaton). An atomic interchange automaton is a tuple
(X, X i, dtype, V, v0, init, flow, inv, urgent, L , E) where

• X ⊆ V is a finite set of variables, X i ⊆ X is the set of internal variables, and Xe = X \ X i
is the set of external variables.

• dtype : X → {disc, cont, alg} is a function that associates to each variable a dynamic type:
discrete, continuous or algebraic. The sets Xdisc, Xcont, Xalg are defined as X t = {x ∈ X |

dtype(x) = t} for t ∈ {disc,cont,alg}, and Xstate = Xdisc ∪ Xcont is the set of state variables.

• V is a finite non-empty set of vertices, called locations, and v0 ∈ V is the initial location.
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• init ∈ Pred(X̃) is the initial condition. For Y ⊆ X , Ỹ = Y ∪ {ẏ | y ∈ Y ∩ Xcont} is the
extension of Y with the dotted versions of the continuous variables in Y .

• flow, inv, urgent : V → Pred(X̃), are functions that each associate to each location v ∈ V
a predicate describing the flow condition, the invariant, and the urgency condition, respec-
tively.

• L ⊆ L is a finite set of action labels.

• E = V × Pred(X̃) × (L ∪ {τ }) × (P(X̃) × Pred(X̃ ∪ X̃−)) × V is a finite set of edges,
such that for each element (v, g, l, (W, r), v′) ∈ E , v and v′ are the source and target
locations, respectively, g is the guard, l is the action label, W ⊆ X̃ is a set of jumping
variables (the value of which may change as a result of an action transition), and r is the
jump predicate, also called reset map. For any Y ⊆ X̃ , Y −

= {y−
| y ∈ Y } denotes the

set of minus superscripted variables that represent the values of variables before an action
transition.

Note that the dynamic type of a variable gives information about its time dependent behavior.
E.g. the value of a discrete variable remains constant when time passes, whereas a the value of
a continuous variable changes as a continuous function of time. The static type, such as real,
integer or boolean, mainly gives information about the domain in which the variable takes values.
The interchange automaton format consists of automata, and operators for parallel composition,
for hiding of action labels and variables, and for the definition of urgent actions. The automata
and operators can be freely combined:

Definition 4.3 (Interchange automaton). The set of interchange automata A is defined by the
following grammar for the interchange automata α ∈ A:

α ::= αatom atomic interchange automaton
| α ‖ α parallel composition
| hideact(Lh, α) action hiding operator
| hidevar(Xh, α, σh) variable hiding operator
| urgentLu

(α) urgent action operator,

where

• αatom denotes an arbitrary atomic interchange automaton;

• Lh ⊆ L denotes a set of actions to hide;

• Xh ⊆ V denotes a set of variables to hide and σh : Xh 7→ 3 denotes a (partial) valuation
for the hidden state variables of interchange automaton α;

• Lu ⊆ L denotes a set of urgent actions.

In the next sections, three auxiliary functions on interchange automata are used. These are defined
below. The functions vare, vare,state and act extract the sets of external variables, external state
variables, and external (non-hidden) action labels2, respectively, from an interchange automaton:

Definition 4.4. For αa = (X, X i, dtype, V, v, init, flow, inv, urgent, L , E), and α, α1, α2 ∈ A we
define the functions vare, vare,state : A → P(V) and act : A → P(L) as follows:

vare,state(αa) = Xstate ∩ Xe
vare,state(α1 ‖ α2) = vare,state(α1) ∪ vare,state(α2)
vare,state(hideact(Lh, α)) = vare,state(α)

vare,state(hidevar(Xh, α, σh)) = vare,state(α) \ Xh
vare,state(urgentLu

(α)) = vare,state(α)

2This does not mean that these actions are actually used. It is allowed to specify the set of actions much broader than
the actions that appear on transitions.
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vare(αa) = Xe
vare(α1 ‖ α2) = vare(α1) ∪ vare(α2)
vare(hideact(Lh, α)) = vare(α)

vare(hidevar(Xh, α, σh)) = vare(α) \ Xh
vare(urgentLu

(α)) = vare(α)

act(αa) = L
act(α1 ‖ α2) = act(α1) ∪ act(α2)
act(hideact(Lh, α)) = act(α) \ Lh
act(hidevar(Xh, α, σh)) = act(α)

act(urgentLu
(α)) = act(α)

5 Semantics of interchange automata
The formal semantics associates to each interchange automaton an action transition relation, a
time transition relation, and a consistency predicate on states. A different way of looking at such
a semantics is as a labeled transition system with two types of transitions and a predicate. The
states S of the labeled transition system associated to an interchange automaton consist of an
interchange automaton, a valuation of the external state variables of that automaton, and a set of
jumping external state variables: i.e., S = A × Val ×P(V), where Val = V ∪ V̇ 7→ 3 is the set of
all partial mappings from V ∪ V̇ to the set of values 3. The set of jumping variables J is defined
by other automata executing in the environment of (in parallel to) automaton α. The valuation σ

of a state of a transition system defines values for precisely the externally visible state variables,
i.e., dom(σ ) = vare,state(α) for all (α, σ, J ) ∈ S.

The intuition of an action transition (α,σ, J )
ξ,l,W,ξ ′

−−−−→ (α′,σ ′, J ) is that the state (α,σ, J ) executes
a discrete action (with action label) l with visible valuations ξ , ξ ′, before and after execution of
the action, respectively, and thereby transforms into the state (α′, σ ′, J ), where σ ′ denotes the
accompanying valuation of the automaton α′, after the discrete action l is executed. The set W
represents the external state variables that are allowed to change (jump) in this action transition.
They need to be visible for synchronization in a parallel composition of interchange automata.

The intuition of a time transition (α,σ, J )
t,ρ
7→ (α′, σ ′, J ) is that model time passes for t time units,

and the valuation at each time-point s ∈ [0, t] is given by ρ(s) for the externally visible variables.
At the end-point t , the resulting state is (α′, σ ′, J ).

The intuition of the consistency predicate (α, σ, J )
ξ
 is that the interchange automaton α is

consistent with extended valuation ξ , which means that the invariants of all active locations of α

are satisfied in ξ .

Notation 5.1. In this section, some notations and operators are used. These are defined as fol-
lows:

• � is the restriction operator on functions. If f is a function, and S is a set, f � S denotes
the restriction of f to S, that is, the function g with dom(g) = dom( f ) ∩ S, such that
g(c) = f (c) for each c ∈ dom(g).

• ↓ is the projection operator on functions, which is used here on trajectories. For ρ : T 7→

(Y → 3), S ⊆ Y and x ∈ Y , ρ ↓ S denotes the function ρ′
: T 7→ (S → 3) such that

ρ′(t) = ρ(t) � S for each t ∈ T ; and ρ ↓ x denotes the function f : T 7→ 3 such that
f (t) = ρ(t)(x) for each t ∈ dom(ρ).

• For atomic interchange automaton αatom given by (X , X i, dtype, V , v, init, flow, inv,
urgent, L , E), αatom[v′, init′/v, init] denotes the atomic interchange automaton obtained
from atomic interchange automaton αatom by replacing v by v′ and init by init′.

5.1 Semantics of atomic interchange automata

Definition 5.2 (Action transitions). Consider an atomic interchange automaton α = (X, X i,
dtype, V, v, init, flow, inv, urgent, L , E). The action transition relation _

_
−→ _ ⊆ S × (Val ×

Lτ ×P(V)× Val)× S is for (α,σ, J ), (α′, σ ′, J ) ∈ S, ξe, ξ
′
e ∈ Val, l ∈Lτ , and We ⊆ V , defined as

follows: (α,σ, J )
ξe,l,We,ξ

′
e

−−−−−→ (α′, σ ′, J ), if and only if there exist and edge (v, g, l, (W, r), v′) ∈ E

8



and ξ, ξ ′
∈ Val with dom(ξ) = dom(ξ ′) = X̃ such that

• ξ � X̃e = ξe and ξ ′ � X̃e = ξ ′
e;

• ξe � Xstate = σ and ξ ′
e � Xstate = σ ′;

• ξ |H init and ξ |H g;

• ξ |H inv(v) and ξ ′
|H inv(v′);

• ξ ′
∪ ξ−

|H r ;

• ξ � Xnonjmp = ξ ′ � Xnonjmp, where Xnonjmp = Xstate \ (W ∪ (J ∩ Xe));

• We = W ∩ Xstate ∩ Xe;

• α′
= α[v′, init′/v, init], init′ =

( ∧
x∈Xstate∩X i

x = cx

)
, and cx ∈ 3 is given by cx = ξ ′(x).

Minus superscripted variables, such as x−, occurring in r are evaluated in ξ−, which is defined
as dom(ξ−) = {x−

| x ∈ dom(ξ)}, and ξ−(x−) = ξ(x). The ‘non-jumping’ variables in the
set Xnonjmp = Xstate \ (W ∪ (J ∩ Xe)) are the variables the values of which are not allowed to
change in an action transition. These variables are the discrete and continuous variables apart
from two sets of variables: the variables from set W and the externally visible variables from
set J (J ∩ Xe). The jumping variables in set J are the result of changes in external variables of
synchronizing automata, as defined in the semantics of parallel composition Rule 1. The updated
initial condition init′ acts as a local valuation which ensures that for each local state variable x ,
its starting value for the next transition equals its resulting value (here: ξ ′(x), in Definition 5.3:
ρ(t)(x)) for the current transition.

Definition 5.3 (Time transitions). Consider an atomic interchange automaton α = (X , X i, dtype,
V , v, init, flow, inv, urgent, L , E). The time transition relation _

_
7−→ _ ⊆ S × (T × (T 7→

Val)) × S is for (α, σ, J ), (α′, σ ′, J ) ∈ S, t ∈ T , and ρe : [0, t] → Val, defined as follows:
(α, σ, J )

t,ρe
7→ (α′, σ ′, J ), if and only if there exists a ρ : [0, t] → Val with dom(ρ(s)) = X̃ for all

s ∈ [0, t] such that

• ρ ↓ X̃e = ρe;

• ρe(0) � Xstate = σ and ρe(t) � Xstate = σ ′;

• ρ(0) |H init;

• ρ ↓ x is a constant function for all x ∈ Xdisc;

• (ρ ↓ x) ∈ F for all x ∈ Xalg;

• ρ ↓ ẋ is an integrable function in the Lebesgue sense for all x ∈ Xcont;

• ρ(s) |H flow(v) and ρ(s) |H inv(v) for all s ∈ [0, t];

• (ρ ↓ x)(s) = (ρ ↓ x)(0) +

s∫
0
(ρ ↓ ẋ)(s′)ds′ for all x ∈ Xcont and s ∈ [0, t];

• (ρ ↓ x, ρ ↓ ẋ) ∈ G for all x ∈ Xcont;

• ρ(s) |H ¬urgent(v) for all s ∈ [0, t);

• α′
= α[init′/init], init′ =

( ∧
x∈Xstate∩X i

x = cx

)
, and cx ∈ 3 is given by cx = ρ(t)(x).
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Item (ρ ↓ x) ∈ F for all x ∈ Xalg, requires the trajectories of the algebraic variables to be functions
of type F . This set of functions is a global parameter of the solution concept of an interchange
automaton specification.
The trajectories of the dotted variables are required to be integrable. This ensures that the integral∫ s

0 (ρ ↓ ẋ)(s′)ds′ is defined. The relation between the trajectory of a continuous variable x and the
trajectory of its ‘derivative’ ẋ is given by the Caratheodory solution concept [12]: (ρ ↓ x)(s) =

(ρ ↓ x)(0)+
∫ s

0 (ρ ↓ ẋ)(s′)ds′. This integral relation can hold only for those continuous variables
for which ρ ↓ x is an absolutely continuous function, but it does allow a non-smooth trajectory
for a continuous variable in the case that the trajectory of its ‘derivative’ ρ ↓ ẋ is non-smooth or
even discontinuous, as in, for example, in the solution of the invariant ẏ = step(t − 1) ∧ ṫ = 1,
where t and y are continuous variable with initial value of 0, and step(x) equals 0 for x ≤ 0 and
1 for x > 0.
In hybrid automata, the solution concept usually defines the function ρ ↓ ẋ to be the derivative
function of ρ ↓ x for continuous variables x ∈ Xcont. This can be realized for the interchange
automaton format semantics by restricting the set G, which is used in the requirement (ρ ↓

x, ρ ↓ ẋ) ∈ G for all x ∈ Xcont, as G = {( f, f ′) | f is differentiable, and f ′ is the derivative
function of f }. In this way, the semantics of the interchange automaton format corresponds to
the usual semantics of hybrid automata. Piecewise continuous functions for the trajectories of
the algebraic and dotted variables can be expressed by means of: F = { f | f is a piecewise
continuous function}, G = {( f, f ′) | f ′ is a piecewise continuous function}. Another possibility
would be not to define additional restrictions: F = { f | true}, G = {( f, f ′) | true}. For an invariant
such as ẋ = y , y = step(t − 1), ṫ = 1, which has just one solution for continuous variables x, t
and algebraic variable y, the solution is the same for both cases of F and G. For an invariant
‘true’ that allows infinitely many solutions, there would obviously be a difference.

Definition 5.4 (Consistency predicates). Consider an atomic interchange automaton α = (X, X i,
dtype, V, v, init, flow, inv, urgent, L , E). The consistency predicate _ _

 ⊆ S × Val is for

(α, σ, J ) ∈ S and ξe ∈ Val, defined as follows: (α, σ, J )
ξe , if and only if there exists a valuation

ξ ∈ Val with dom(ξ) = X̃ such that ξ � X̃e = ξe, ξe � Xstate = σ , and ξ |H inv(v).

5.2 Semantics of the operators

The formal semantics of the operators is defined in a structured operational semantics (SOS)
style [31] below.

Notation 5.5. The following notations are used in this section:

• For functions f, g : A 7→ B, we define f l g iff f (a) = g(a) for all a ∈ dom( f )∩ dom(g).
Similarly, for functions f, g : T 7→ A 7→ B with dom( f ) = dom(g), we define f m g iff
f (t) l g(t) for all t ∈ dom( f ).

• If f and g are functions with f l g, then f ∪ g denotes the function h with dom(h) =

dom( f ) ∪ dom(g) satisfying the condition: for each c ∈ dom(h), if c ∈ dom( f ) then
h(c) = f (c), and h(c) = g(c) otherwise. Similarly, if f and g are functions with f m g,
then f d g denotes the function h with dom(h) = dom( f ) satisfying the condition: for
each t ∈ dom(h), h(t) = f (t) ∪ g(t).

• For functions f, g : A 7→ B, we define f � g to denote the function h with dom(h) =

dom( f ) ∪ dom(g) satisfying the condition: for each a ∈ dom(h), if a ∈ dom( f ) then
h(a) = f (a), and h(a) = g(a) otherwise.

• The notation H
R , where R is a number of results separated by commas, as used in Rule 2,

is an abbreviation for a set of deduction rules of the form H
r ; one for each r ∈ R.
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Parallel composition

The most common operator for composing hybrid automata is parallel composition. There are
no compatibility requirements for the parallel composition of interchange automata: any pair
of interchange automata can be composed by the parallel composition operator. The parallel
composition operator synchronizes on all external actions that the arguments share and allows
interleaving of any other actions (under the condition that they maintain the consistency of the
other automaton). Time transitions must be synchronized, and consistency is established only if
both automata agree on it. The external state variables that are shared by the argument automata
need to have the same values (all the time).

(α1, σα1 , J ∪ W2)
ξ1,l,W1,ξ

′

1
−−−−−−→ (α′

1, σ
′

1, J ′), (α2, σα2 , J ∪ W1)
ξ2,l,W2,ξ

′

2
−−−−−−→ (α′

2, σ
′

2, J ′′),

ξ1 l ξ2 , ξ ′

1 l ξ ′

2 , l 6= τ

(α1 ‖ α2, σ, J )
ξ1∪ξ2,l,W1∪W2,ξ

′

1∪ξ ′

2
−−−−−−−−−−−−−→ (α′

1 ‖ α′

2, σ
′

1 ∪ σ ′

2, J )

1

(α2, σα2 , J )
ξ2 , (α1, σα1 , J )

ξ1,l,W,ξ ′

1
−−−−−→ (α′

1, σ
′

1, J ′),

(α2, σ
′

1 � dom(σα2) � σα2 , J )
ξ ′

2 , ξ1 l ξ2 , ξ ′

1 l ξ ′

2 , l 6∈ act(α2)

(α1 ‖ α2, σ, J )
ξ1∪ξ2,l,W,ξ ′

1∪ξ ′

2
−−−−−−−−−→ (α′

1 ‖ α2, σ
′

1 � σ ′

2, J ),

(α2 ‖ α1, σ, J )
ξ2∪ξ1,l,W,ξ ′

2∪ξ ′

1
−−−−−−−−−→ (α2 ‖ α′

1, σ
′

1 � σ ′

2, J )

2

(α1, σα1 , J )
t,ρ1
7−→ (α′

1, σ
′

1, J ′), (α2, σα2 , J )
t,ρ2
7−→ (α′

2, σ
′

2, J ′′), ρ1 m ρ2

(α1 ‖ α2, σ, J )
t,ρ1dρ2
7−→ (α′

1 ‖ α′

2, σ
′

1 ∪ σ ′

2, J )

3

(α1, σα1 , J )
ξ1 , (α2, σα2 , J )

ξ2 , ξ1 l ξ2

(α1 ‖ α2, σ, J )
ξ1∪ξ2 

4

Here, σα1 and σα2 are abbreviations for σ � vare,state(α1) and σ � vare,state(α2), respectively. Note
that by definition (see the definition of the state S in Section 5), dom(σ ) = vare,state(α1 ‖ α2).
The valuation σ ′

1 � dom(σα2) � σα2 in Rule 2 represents the updated version of valuation σα2
such that the valuations for the shared variables (vare,state(α1) ∩ vare,state(α2)) in σα2 have been
overwritten by the values defined in σ ′

1. In this way, Rule 2 allows an automaton to change the
values of variables shared with another automaton, as long as the new valuations for the shared
variables are consistent with the (invariants of the) other automaton.

Action hiding

The action hiding operator applied to an automaton, hideact(Lh, α), hides (abstracts from) the
actions from set Lh by replacing them by the internal action τ . This only affects the action
behavior of α; its delay behavior and consistency remain unchanged.

(α, σ, J )
ξ,l,W,ξ ′

−−−−→ (α′, σ ′, J ′), l 6∈ Lh

(hideact(Lh, α), σ, J )
ξ,l,W,ξ ′

−−−−→ (hideact(Lh, α′), σ ′, J )

5

(α, σ, J )
ξ,l,W,ξ ′

−−−−→ (α′, σ ′, J ′), l ∈ Lh

(hideact(Lh, α), σ, J )
ξ,τ,W,ξ ′

−−−−−→ (hideact(Lh, α′), σ ′, J )

6

(α, σ, J )
t,ρ

7−→ (α′, σ ′, J ′)

(hideact(Lh, α), σ, J )
t,ρ

7−→ (hideact(Lh, α′), σ ′, J )
7

(α, σ, J )
ξ
 

(hideact(Lh, α), σ, J )
ξ
 

8,
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Variable hiding

The variable hiding operator applied to an automaton, hidevar(Xh,α,σh), hides the variables from
set Xh by removing information about them from the action and time transitions of α. The values
of the hidden state variables are stored in valuation σh.

(α, σ ∪ σ ′

h, J \ Xh)
ξ,l,W,ξ ′

−−−−→ (α′, σ ′, J ′), σ ′

h l σh , dom(σ ′

h) = vare,state(α) ∩ Xh

(hidevar(Xh, α, σh), σ, J )
ξvis,l,Wvis,ξ

′

vis
−−−−−−−−→ (hidevar(Xh, α′, σ ′

σ ′

h
), σ ′

σ , J )

9

(α, σ ∪ σ ′

h, J \ Xh)
t,ρ

7−→ (α′, σ ′, J ′), σ ′

h l σh , dom(σ ′

h) = vare,state(α) ∩ Xh

(hidevar(Xh, α, σh), σ, J )
t,ρvis
7−→ (hidevar(Xh, α′, σ ′

σ ′

h
), σ ′

σ , J )
10

(α, σ ∪ σ ′

h, J \ Xh)
ξ
 , σ ′

h l σh , dom(σ ′

h) = vare,state(α) ∩ Xh

(hidevar(Xh, α, σh), σ, J )
ξvis 

11

Notations σ ′

σ ′

h
and σ ′

σ are abbreviations for σ ′ � dom(σ ′

h) and σ ′ � dom(σ ), respectively. The

visible valuations ξvis and ξ ′

vis, visible set of jumping variables Wvis, and visible trajectory ρvis,
are abbreviations for ξ � (Xvis ∪ Ẋvis), ξ ′ � (Xvis ∪ Ẋvis), W � Xvis, and ρ ↓ (Xvis ∪ Ẋvis),
respectively, with Xvis = vare(α) \ Xh.
Valuation σh : Xh 7→ 3 is a partial function that defines the initial values for (some of) the
hidden variables. These initial values are relevant only for the hidden state variables: valuation
σ ′

h : vare,state(α) ∩ Xh → 3 defines the initial values for the hidden state variables and takes them
from σh if possible and takes arbitrary values otherwise: σ ′

h l σh.

Urgent action operator

The urgent action operator applied to an automaton, urgentLu
(α), gives actions from the set Lu

priority over time passing. The action behavior and consistency of α are not affected by the urgent
action operator. Time transitions are allowed only if at the current state, and at each intermediate
state while delaying, no actions from set Lu are possible.

(α, σ, J )
ξ,l,W,ξ ′

−−−−→ (α′, σ ′, J ′)

(urgentLu
(α), σ, J )

ξ,l,W,ξ ′

−−−−→ (urgentLu
(α′), σ ′, J )

12
(α, σ, J )

ξ
 

(urgentLu
(α), σ, J )

ξ
 

13

(α, σ, J )
t,ρ

7−→ (α′, σ ′, J ′), ∀l∈Lu(α, σ, J )
l9 ,

∀s∈[0,t) (∃α′′,σ ′′,J ′′ (α, σ, J )
s,ρ�[0,s]
7−→ (α′′, σ ′′, J ′′),

(α′′, σ ′′, J ′′)
t−s,ρ−s
7−→ (α′, σ ′, J ′), ∀l∈Lu (α′′, σ ′′, J ′′)

l9)

(urgentLu
(α), σ, J )

t,ρ
7−→ (urgentLu

(α′), σ ′, J )
14

Here ρ−s denotes the trajectory ρ shifted left by s time-units and starting at 0: dom(ρ−s) =

[0, t − s], assuming dom(ρ) = [0, t], and ∀t ′∈dom(ρ−s ) ρ−s(t ′) = ρ(t ′ + s). Furthermore, notation

(α, σ, J )
l9 denotes ¬∃ξ,W,ξ ′,α′,σ ′,J ′ (α, σ, J )

ξ,l,W,ξ ′

−−−−→ (α′, σ ′, J ′).

5.3 Equality and compositionality

Two interchange automata α1 and α2 are considered comparable iff they have the same sets of
externally visible state variables and actions: i.e., vare,state(α1) = vare,state(α2) and act(α1) =

act(α2). Next, we define when two comparable interchange automata are equivalent. For this we
use the notion of stateless bisimilarity as defined in [28].
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Definition 5.6. A symmetric relation R on comparable interchange automata is a (stateless)
bisimulation relation, if and only if for all (α1, α2) ∈ R and for all α′

1, σ,σ ′, J, J ′, ξ, ξ ′, l, W, t, ρ:

• if (α1, σ, J )
ξ,l,W,ξ ′

−−−−→ (α′

1, σ ′, J ′), then (α2, σ, J )
ξ,l,W,ξ ′

−−−−→ (α′

2, σ ′, J ′) for some α′

2 such
that (α′

1, α
′

2) ∈ R;

• if (α1, σ, J )
t,ρ

7−→ (α′

1, σ ′, J ′), then (α2, σ, J )
t,ρ

7−→ (α′

2, σ ′, J ′) for some α′

2 such that
(α′

1, α
′

2) ∈ R;

• if (α1, σ, J )
ξ
 , then (α2, σ, J )

ξ
 .

Two interchange automata α1 and α2 are (stateless) bisimilar, notation α1 ↔ α2, if and only if
there exists a (stateless) bisimulation relation R such that (α1, α2) ∈ R.

Note that if an automaton α1 is comparable with another automaton α2, then any automaton α′

1
that can be reached from automaton α1 by performing action and time transitions is also compa-
rable with α2. Therefore, the above restriction on a bisimulation relation that only comparable
automata can be related needs to be verified/established only for the automata that one wishes to
compare.

Theorem 5.7. Bisimilarity is a congruence for all operators introduced in this article.

Proof. Apart from Rule 14 for the urgent action operator, it is easy to see that all deduction rules
of the operators of the interchange automaton format satisfy the process-tyft format containing
predicates [28] (which we call process-path format for simplicity). Thus for all operators, except
for the urgent action operator, it can be concluded that stateless bisimilarity is a congruence.
Rule 14 does not satisfy the process-path format. Therefore we need to give manual proof to
show that stateless bisimilarity is a congruence for the urgent action operator. The proof required
is similar to the proof given in [25], pages 160–161. From this proof, we can conclude that
stateless bisimilarity is also a congruence for the urgent action operator.

6 Elimination of the operators
This section defines how an interchange automaton specification can be rewritten as a single
atomic interchange automaton that is bisimilar to the original specification. For this purpose, we
define how the operators of the interchange automaton language can be eliminated when they are
applied to one or more atomic interchange automata.

6.1 Elimination of parallel composition

Let α1 and α2 denote two atomic interchange automata the shared variables of which have com-
patible types (defined below), and let two renaming functions R1 and R2 be defined on atomic
interchange automata, in such a way, that the internal variables of the renamed automata R1(α1)
and R2(α2) become unique (different from all other variables). The parallel composition operator
can then be eliminated as defined below.
Let R1(α1) = (X1, X i1, dtype1, V1, v01 , init1, flow1, inv1, urgent1, L1, E1) and R2(α2) = (X2,
X i2, dtype2, V2, v02 , init2, flow2, inv2, urgent2, L2, E2) denote the two atomic interchange au-
tomata that are obtained by renaming the internal variables of α1 and α2, so that X i1 ∩ X2 = ∅ and
X i2 ∩ X1 = ∅. Then the parallel composition α1 ‖ α2 can be rewritten as an atomic interchange
automaton α = (X , X i, dtype, V , v0, init, flow, inv, urgent, L , E) such that:

• X = X1 ∪ X2;
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• X i = X i1 ∪ X i2;

• for all x ∈ X : dtype(x) =


dtype1(x) if x ∈ X1 \ X2

dtype2(x) if x ∈ X2 \ X1

mdt(dtype1(x), dtype2(x)) if x ∈ X1 ∩ X2

• V = V1 × V2;

• v0 = (v01 , v02);

• init = init1 ∧ init2;

• flow(v1, v2) = flow1(v1) ∧ flow2(v2), inv(v1, v2) = inv1(v1) ∧ inv2(v2),
urgent(v1, v2) = urgent1(v1) ∨ urgent2(v2);

• L = L1 ∪ L2;

• E contains the edge ((v1, v2), g, l, (W, r), (v′

1, v
′

2)) if and only if:

– there is an edge (v2, g, l, (W, r), v′

2) ∈ E2 such that l 6∈ L1, and v1 = v′

1;

– there is an edge (v1, g, l, (W, r), v′

1) ∈ E1 such that l 6∈ L2, and v2 = v′

2;

– there is an edge (v1, g1, l, (W1,r1), v
′

1) ∈ E1 and an edge (v2, g2, l, (W2,r2), v
′

2) ∈ E2
such that l 6= τ , and W = W1 ∪ W2, r = r1 ∧ r2, g = g1 ∧ g2.

The function mdt ∈ D → D merges the dynamic types from setD = {disc, cont,alg} as follows:
mdt(disc,disc) = disc, mdt(cont,cont) = cont, and mdt(alg,d) = mdt(d,alg) = d for all d ∈D.
In principle, we could define mdt(cont,disc) = mdt(disc, cont) = cont and define an additional
equation ẋ = 0 for all variables that are of dynamic type disc in one of the parallel automata and
of dynamic type cont in the other automaton. This is not done in order to keep the elimination
of parallel composition straightforward. Therefore, compatible types are defined as follows: the
dynamic type alg is compatible with all other dynamic types and identical types are compatible.
We conjecture that the automata α1 ‖ α2 and α are bisimilar.
Renaming the internal variables is needed in general, because elimination of the parallel compo-
sition operator merges the variables of the two parallel automata, and only the external variables
with the same names should be shared. This renaming of internal variables does not change
the meaning of the automata, because the internal variables do not appear on the transition sys-
tem (see Section 5). Note that elimination of the parallel composition operator does not require
actions to be renamed, because the actions of sets L , L1, L2 are all external. Hidden actions
are renamed to the non-synchronizing τ action label, either by the action hiding operator, or by
elimination (see Sections 5.2 and 6.2, respectively).

6.2 Elimination of action hiding

Let α = (X , X i, dtype, V , v0, init, flow, inv, urgent, L , E) denote an atomic interchange automa-
ton. The action hiding operator applied to this atomic interchange automaton hideact(Lh, α) can
be rewritten as an atomic interchange automaton α′

= (X , X i, dtype, V , v0, init, flow, inv, urgent,
L ′, E ′) such that:

• L ′
= L \ Lh;

• E ′
= {(v, g, l, (W, r), v′) | (v, g, l, (W, r), v′) ∈ E, l 6∈ Lh} ∪

{(v, g, τ, (W, r), v′) | (v, g, l, (W, r), v′) ∈ E, l ∈ Lh}.

We conjecture that the automata hideact(Lh, α) and α′ are bisimilar.
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6.3 Elimination of variable hiding

Let α = (X , X i, dtype, V , v0, init, flow, inv, urgent, L , E) denote an atomic interchange automa-
ton. The action hiding applied to this atomic interchange automaton hidevar(Xh, α, σh) can be
rewritten as an atomic interchange automaton α′

= (X , X i
′, dtype, V , v0, init′, flow, inv, urgent,

L , E) such that:

• X i
′
= X i ∪ (Xh ∩ Xe);

• init′ = init ∧

( ∧
x∈dom(σh)∩Xe∩Xstate

x = cx

)
, where cx ∈ 3 is given by cx = σh(x).

We conjecture that the automata hidevar(Xh, α, σh) and α′ are bisimilar.

6.4 Elimination of the urgent action operator

For a subclass of atomic interchange automata characterized as being ‘reactive’ (defined below)
for all urgent actions, the urgent action operator can be eliminated by redefining the urgency con-
ditions. Let α = (X , X i, dtype, V , v0, init, flow, inv, urgent, L , E) denote an atomic interchange
automaton, let Lu ⊆ L be a set of urgent actions, and let automaton α be reactive for all actions
of set Lu. Then the result of applying the urgent action operator with urgent action set Lu on α,
denoted as urgentLu

(α), can be rewritten as the interchange automaton α′
= (X , X i, dtype, V ,

v0, init, flow, inv, urgent′, L , E), such that the urgency condition of each location in α′ is the
disjunction of 1) the urgency condition of the location in α, and 2) the guards of the outgoing
urgent edges of the location, where an urgent edge is an edge with an action l ∈ Lu:

urgent′(v) = urgent(v) ∨

 ∨
g∈ug(v)

g

 , where ug(v) = {g | (v, g, l, (W, r), v′) ∈ E , l ∈ Lu}.

We conjecture that the automata urgentLu
(α) and α′ are bisimilar.

An atomic interchange automaton is reactive for a set of actions Lu if whenever the guard of
an edge labeled with an urgent action label l ∈ Lu can be satisfied, the automaton has an action
transition for action l. This means that the invariants of the target locations of edges with urgent
actions (and the jump predicates of the edges) should not prevent the action from taking place.
Formally, an atomic interchange automaton (X , X i, dtype, V , v0, init, flow, inv, urgent, L , E) is
reactive for a set of actions Lu ⊆ L if

∀
(v,ξ,J )∈Ŝ (∀(v,g,l,(W,r),v′)∈Eu ξ |H g H⇒ (αv, ξ � Xstate, J )

ξe,l,W,ξ ′
e

−−−−−→ (α′, σ, J )),

for some ξe, W , ξ ′
e, α′, and σ , where the set of admissible extended states Ŝ is defined as:

Ŝ = {(v, ξ, J ) ∈ V × Val × P(V) | ξ |H inv(v)}, the set of edges Eu is defined as Eu =

{(v, g, l, (W, r), v′) ∈ E | l ∈ Lu}, and αv is defined as the atomic interchange automaton α

with initial location v and initial condition true: αv = (X , X i, dtype, V , v, true, flow, inv, urgent,
L , E).

7 Concluding remarks
The proposed interchange automaton format integrates formalisms rooted in computer science
with those rooted in dynamics and control. Future work entails, among others, adding the notion
of input/output variables and input/output actions, adding channels as communication mechanism
between interchange automata in a parallel composition, adding additional operators, such as
sequential composition, and defining the syntax of the concrete and transfer interchange formats
as well as their mapping to the abstract interchange automaton format. The development of
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translations and simulator implementations will be done by different partners in Work Package 3
of the HYCON NoE [21].
The atomic interchange automata as introduced syntactically in Definition 4.2 and for which
the semantics has been introduced in Section 5 are very expressive. For any application of an
action or variable hiding operator on an atomic interchange automaton, it is possible to obtain
an equivalent atomic interchange automaton. Also, the parallel composition of any two atomic
interchange automata for which the shared variables have compatible types can be replaced by
an equivalent atomic interchange automaton. The only operator that cannot be eliminated in all
relevant cases is the urgent action operator.
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