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DC⇔CS Sim⇔Ver Chi Phenomena CIF

Outline

1. Dynamics and control ⇔ computer science world view

2. Simulation languages ⇔ verification formalisms

3. Chi language

4. Phenomena in hybrid simulation (languages)

5. Compositional Interchange Format (CIF)
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Dynamics and control world view

• Predominantly continuous-time system

• Modeled by means of DAEs (differential algebraic equations),
or by means of a set of trajectories

• Hybrid phenomena modeled by means of discontinuous
functions and/or switched equations, possibly using extended
solution concepts (Filippov, Utkin) leading to sliding modes

• Evolution of a hybrid system: value of each variable a
(possibly discontinuous) function of time =⇒ for each
variable at each time point one value

• Examples: piecewise affine (PWA) systems, mixed logic
dynamical (MLD) systems or linear complementarity (LC)
systems

(i = 0 ∧ v ≤ 0) ∨ (v = 0 ∧ i ≥ 0)
iv+ −

DAE model of a diode
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Computer science world view

• Predominantly discrete-event system

• Modeled by means of (timed/hybrid) automaton, process
algebra, Petri net, data flow languages, etc.

• Evolution of a hybrid system: sequence of time transitions and
action transitions. Due to sequences of action transitions, a
variable may have multiple values at the same time point

• Time transitions: for each variable continuous function of time

• Discontinuities are represented by actions

i = 0
v ≤ 0

v = 0
i ≥ 0

Automaton model of a diode

Bert van Beek TU/e Simulation of Hybrid Systems 4/56



DC⇔CS Sim⇔Ver Chi Phenomena CIF DC CS DC models CS models DC + CS

DAE model of diode-switch network

Switching between

• voltage source of −1
(diode blocks)

• current source of +1
(diode conducts)

s

−

+

−1 ↑ 1

→ iv

Generalized differential algebraic equation models use predicates as
“equations”:

(¬s =⇒ v = −1) ∧ (s =⇒ i = 1)

(i = 0 ∧ v ≤ 0) ∨ (v = 0 ∧ i ≥ 0)

s =

{
true for 0 ≤ t < 2

false for t ≥ 2
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Algebraic variables

Reduced DAE model of diode-switch network:{
s ∧ v = 0 ∧ i = 1 for 0 ≤ t < 2

¬s ∧ v = −1 ∧ i = 0 for t ≥ 2

Values of v and i change discontinuously at time point 2.
Therefore they are algebraic variables.

Algebraic variables:

• Any function of time, possibly discontinuous

• No memory

• No derivative
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Continuous variables

Continuous variables:

• Continuous function of time: x(t) = x(0) +
∫ t
0 ẋ(s)ds

• Memory

• Derivative may be used

Examples

• Mass m, force F , velocity v :
F = mv̇ , continuous variable v

• Tank with volume V , inflow Qi , outflow Qo :
V̇ = Qi − Qo , continuous variable V

• Capacitor C , voltage v , current i :
i = Cv̇ , continuous variable v
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DAE model of diode-switch-capacitor network

(¬s =⇒ v = −1) ∧ (s =⇒ i = 1− Cv̇)

(i = 0 ∧ v ≤ 0) ∨ (v = 0 ∧ i ≥ 0)

s =

{
true for 0 ≤ t < 2

false for t ≥ 2

Equivalent specification:{
s ∧ ((i = 0 ∧ v̇ = 1/C ∧ v ≤ 0) ∨ (v = 0 ∧ i = 1)) for 0 ≤ t < 2

¬s ∧ v = −1 ∧ i = 0 for t ≥ 2

Problem: Now v must be a continuous variable, with derivative,
and continuous behavior =⇒ value of v cannot change
discontinuously to −1 when switch opens!

s

−

+

−1 ↑ 1

→ i

C

v
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Automaton model of diode-switch network (1)

• All variables are continuous

• Mode switching: assume that value of
a variable can change arbitrarily to
satisfy invariant of next mode =⇒
continuous variables behave in a
similar way as algebraic variables

−

+

−1 ↑ 1

→ iv

i = 1 isdown

v = −1 isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

block

conduct
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Interleaving parallel composition

v = −1
i ≥ 0
v = 0

isup

conducting

v = −1
i = 0
v ≤ 0

isup

blocked

i = 1
i ≥ 0
v = 0

isdown

conducting

i = 1
i = 0
v ≤ 0

isdown

blocked

block

down

conduct

down

block

up

conduct

up

meaning

i = 1 isdown

v = −1 isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

block

conduct
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Simplified automaton

v = −1
i = 0
v ≤ 0

isup

blocked

i = 1
i ≥ 0
v = 0

isdown

conducting

meaning

i = 1 isdown

v = −1 isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

block

conduct
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Synchronizing on common labels

Change diode model labels such that they synchronize with switch
model labels

v = −1
i = 0
v ≤ 0

isup

blocked

i = 1
i ≥ 0
v = 0

isdown

conducting

down

up
meaning

i = 1 isdown

v = −1 isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

up

down
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Automaton model of diode-switch network (2)

Voltage source E is positive or negative

−

+

E ↑ 1

→ iv
R

i = 1 isdown

v =
E − iR

isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

up

up

down

down
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Synchronizing on common labels (2)

i =
E/R
i ≥ 0
v = 0

isup

conducting
E positive

v = E
i = 0
v ≤ 0

isup

blocked
E negative

i = 1
i ≥ 0
v = 0

isdown

conducting

i = 1
i = 0
v ≤ 0

isdown

blocked

down

down

up
up

meaning

i = 1 isdown

v =
E − iR

isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

up

up

down

down
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Conclusions automaton model of diode-switch network

• Automaton model of diode not a compositional way of
modeling:
Model of diode needs to know action names of automata
models of switches.

• Automata mode switching only in case of actions.

• Incorrect behavior in case of time-dependent varying voltage
or current source: no switching of mode of automaton!

−

+

E ↑ 1

→ iv
R

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

up

up

down

down
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Combining the DC and CS world views (1)

Combine the differential algebraic equations from the dynamics
and control world view with automata

• Algebraic variables

• Continuous variables

• Hybrid phenomena may be modeled by means of discontinuous
functions and/or switched equations, possibly using extended
solution concepts (Filippov, Utkin) leading to sliding modes

• By means of actions, automata can change from one mode to
another

• In each mode, variables (algebraic/dotted) can behave
according to discontinuous functions of time
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DC + CS model of diode-switch-capacitor network

Assume t denotes time

s

−

+

−1 ↑ 1

→ i

C

v

i =
1− Cv̇

isdown

v = −1 isup

t ≥ 2 → v := −1

(i = 0 ∧ v ≤ 0) ∨ (v = 0 ∧ i ≥ 0)

More general model: instead of assignment v := −1 on automaton
edge, specify that the value of v may change arbitrarily.

E.g. t ≥ 2 → {v} : true (see last sheets on instantaneous
equations).
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Algebraic and continuous variables in simulation languages

• Distinction between algebraic and continuous variables usually
implicit.

• No derivative =⇒ algebraic

• Derivative =⇒ continuous

Consider:

x < 0 =⇒ ẋ = 1

x ≥ 0 =⇒ x = 0

Is x continuous, or switching between continuous and algebraic? In
many languages such models are not allowed. Use discontinuous
right hand sides to approach the meaning:

ẋ =

{
1 if x < 0

0 if x ≥ 0
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Simulation languages

• Ease of modeling =⇒ complex languages

• Verification not an issue, no formal semantics: (no
verification)

• Languages specialize either in the discrete-event (DE) domain
or in the continuous-time (CT) domain

• Hybrid languages usually DE+ (E.g. Siman, Simple++) or
CT+ (E.g. Simulink, Modelica, EcosimPro)
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Verification formalisms

• Ease of formal analysis =⇒ small languages with formal
semantics

• Ease of modeling not an issue: cumbersome for modeling and
simulation

• Examples for hybrid systems: PHAVer, HyTech; for timed
systems: PROMELA, UPPAAL.
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Overview of the Chi language (1)

• Suited to:
• simulation
• verification
• code generation

• Integrates:
• discrete-event modeling (CS world view: automata, process

algebra)
• continuous-time modeling, (DC world view: switched

differential algebraic equations)
• discrete-time modeling (DC world view: sampled systems)

• Formal compositional semantics

• Consistent equation semantics of Chi ensures that equations
are always consistent, comparable to invariants of hybrid
automata
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Overview of the Chi language (2)

• Is a process algebra defined by means of:
• atomic statements, e.g. assignment (x := 2), DAE

(ẋ = −x + 1)
• an orthogonal set of operators, e.g. sequential comp. (;) and

parallel comp. (‖)
that can be freely combined

• Core language small. Ease of use due to many syntactical
extensions (all formally defined)

• Modular and hierarchical and scalable by means of process
definition and process instantiation (reuse)

• Stochastic: definition of distributions and sampling
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The Chi language definition (1)

A Chi model is of the following form:

model M(parameter declarations) =
|[ channel and variable declarations
:: p
]|

where p represents a process term (statement)
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The Chi language definition (2)

Process term Meaning
p ::= skip internal action

| x := e assignment
| a ! e sending
| a ? x receiving
| delay e delay statement
| eqn u equation
| X name of mode
| b -> p guard operator
| p ; p sequential composition
| p || p parallel composition
| p | p alternative composition
| *p infinite repetition
| |[ D :: p ]| scope operator: declaration D of local variables

/ channels / mode definitions
| lp(xk , hm , en) process instantiation
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The Chi language definition (3)

Equation eqn u:

• Differential equation: rde1 = rde2

rde1 and rde2 are real-valued expressions on variables and
dotted variables

• E.g. eqn dot x = -x + y

Also invariants inv u as in hybrid automata. E.g.:

• inv x >= 0

Difference: equations normally do not restrict the duration of a
solution, invariants do.
E.g.

• eqn dot x = 1 || inv x >= 1
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Controlled tank system (1)

V

Qin

Qo

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6

Time

Simulation tank on-off controller

V
Qi

Qo
n

model ControlledTank() =

|[ var n: nat = 0, cont V: real = 10, alg Qi,Qo: real

:: eqn dot V = Qi - Qo

, Qi = n * 5

, Qo = sqrt(V)

|| *( V <= 2 -> n:= 1; V >= 10 -> n:= 0 )

]|
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Controlled tank system (2)

Equivalent specification using modes, as in automata

model ControlledTank() =

|[ var n: nat = 0, cont V: real = 10

, alg Qi,Qo: real

:: eqn dot V = Qi - Qo

, Qi = n * 5

, Qo = sqrt(V)

|| |[ mode noinflow =

( V <= 2 -> n:= 1; inflow )

, mode inflow =

( V >= 10 -> n:= 0; noinflow )

:: noinflow

]|

]|

noinflow inflow

V<=2 -> n:=1

V>=10 -> n:=0
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Current simulation tools for Chi

• Stand-alone symbolic simulator for hybrid and timed Chi
(Python)

• S-function block hybrid Chi simulator for co-simulation in
Matlab/Simulink

• Stand-alone simulator for timed Chi (C)

• For more info see: se.wtb.tue.nl/sewiki and
se.wtb.tue.nl/~vanbeek (publications)

Note: slight changes of syntax in this presentation with syntax in
current tools.
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Nondeterminism

Models may be nondeterministic in several ways:

• Nondeterministic choice between actions
E.g. x:=1 | x:=2

• Nondeterministic choice between multiple solutions of
equations
E.g. equation x2 = 1

• Nondeterministic choice between time passing and execution
of an action
E.g. “Execute assignment x:= 1 at any time point between
now and two time units later”

Nondeterminism is often used in verification to prove that a
control system behaves correctly in an non-deterministic
environment, where inputs/behavior cannot be predicted.
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How do simulators deal with non-determinism?

• Solutions of systems of equations usually required to be unique

• Choice between actions usually enforced by implicit or explicit
priorities
E.g. Stateflow in Simulink has explicit priority scheme for
actions, where graphical position of a block / mode
determines its priority

• Non-determinism may be completely forbidden (e.g. Modelica)

• Some simulators may run in different modes (e.g. Chi
simulator):
• Mode where each choice is resolved by user interaction (e.g.

choice between actions, length of time step, choice between
action or time passing)

• Free running mode, where simulator makes the choice

• Enforce urgency to give priority to actions over time passing
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Urgency

ẋ = 1 ẋ = 1
x = 0 x ≥ 2 → x := 0

Using an urgency semantics, the assignment to x is executed as
soon as the guard becomes true (x = 2).

Without urgency, the assignment can be executed when the guard
becomes true, but also at any time point after that.

Most simulation languages use an urgency or “triggering guard”
semantics. Chi language can express both urgency and
non-urgency.
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Strict inequalities in urgent guards

Continuous variable x and discrete variable y :

ẋ = 1 . . .
x = 0 ∧ y = 0 x > 2 → y := x

What is the value of y after execution of the assignment y := x?
This depends on the semantics / meaning of the model:

• The formal mathematical meaning is that the statement
cannot be executed: there is no smallest value of x that is
bigger than two

• In some simulation languages the guard x > c may be
interpreted as for example:
• x ≥ c + εa, with εa > 0
• x ≥ c(1 + εr), with εr > 0
• x ∈ [a, b], with a > 2, b > 2, b > a
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Abstract simulation algorithm

Assumptions:

• Equations have a unique solution

• Urgency: execution of actions has priority over time passing

Generalized and simplified algorithm for hybrid systems simulation:

1. Execute actions until no more can be executed. In the case of
choice between actions, choose the action with the highest
priority; otherwise let the simulator make a choice

2. Solve equations for the continuous and algebraic variables,
until the time point that one or more actions become enabled,
or until the end time of the simulation

3. Unless the end point of the simulation has been reached or
the model has terminated, go back to 1.
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Algebraic loops (1)

Actual simulation algorithms are much more complex, particularly
in the case of algebraic loops.
A system of algebraic equations has an algebraic loop if there is a
circular dependency in the equations and algebraic variables
(assuming values of discrete and continuous variables as known).

model NoLoop1() =

|[ alg y,z: real

:: eqn y + z = 2

, z = 0

]|

model AlgebraicLoop1() =

|[ alg y,z: real

:: eqn y + z = 2

, y - z = 0

]|

model NoLoop2() =

|[ var n: real = 1.0

, cont x: real = 1.0

, alg y,z: real

:: eqn dot x = -x + y

, y = n*x

, z = y + 2

]|

model AlgebraicLoop2() =

|[ var n: real = 1.0

, cont x: real = 1.0

, alg y,z: real

:: eqn dot x = -x + y

, y = n*x - z

, z = y + 2

]|
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Algebraic loops (2)

model AlgebraicLoop1() =

|[ var n: real = 2.0, alg y,z: real

:: eqn y + z = n

, y - z = 0

]|

How do hybrid systems simulators deal with algebraic loops?

• Many don’t

• Algebraic loops may be solved symbolically
(eqn y = n/2, z = n/2)

• Algebraic loops may be solved with specialized numerical
solvers

• For nonlinear dynamics, numerical solvers may require an
“initial guess” close to the solution to ensure convergence of
the algorithm
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Simulation phenomena: the bouncing ball

-20
-15
-10
-5
 0
 5

 10
 15
 20

 0  1  2  3  4  5  6  7
time

bouncing_ball.chi

h
v

model BounceBall() =

|[ cont h: real = 20.0

, v: real = 0.0

:: eqn dot h = v

, dot v = -10

|| |[ mode fall = ( h <= 0 -> v:= -0.5 * v; rise )

, mode rise = ( v <= 0 -> skip; fall )

:: fall

]|

]|
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Accumulation point and zeno behavior

-5
-4
-3
-2
-1
 0
 1
 2
 3

 5  5.2  5.4  5.6  5.8  6
time

bouncing_ball.chi

h
v

• Simulation will not proceed beyond time point 6, which is an
accumulation point

• In theory there will be an infinite number of events before
time point 6 is reached (zeno behavior)

• Unless special measures are taken, numerical simulation of
zeno behavior may lead to erroneous results
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Proper bouncing ball model

• The symbolic Chi simulator can proceed until the numerical
machine accuracy is reached

• A number of bounces approaching infinity does not conform
to reality

• A proper model ensures that bouncing eventually stops, and
certainly before simulation errors occur; e.g. when bounce
height becomes too low

• Bouncing can be stopped in two ways:
• By adding a force counteracting gravity, so that time may still

progress
• By terminating the model (no more actions possible and no

more time passing)
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Proper bouncing ball model: force counteracting gravity

model BounceBall() =

|[ cont h: real = 20.0

, v: real = 0.0

, var g: real = 10.0, F: real = 0.0

:: eqn dot h = v

, dot v = -g + F

|| |[ mode fall = ( h <= 0 -> v:= -0.5 * v; rise )

, mode rise = ( v <= 0 -> skip

; ( h >= 0.01 -> skip; fall

| h < 0.01 -> h:= 0.0; F:= g

// terminate state machine

)

)

:: fall

]|

]|
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Proper bouncing ball model: complete termination

model BounceBall() =

|[ cont h: real = 20.0

, v: real = 0.0

:: |[ mode fall = ( eqn dot h = v, dot v = -10

| h <= 0 -> v:= -0.5 * v; rise

)

, mode rise = ( eqn dot h = v, dot v = -10

| v <= 0 -> skip

; ( h >= 0.01 -> skip; fall

| h < 0.01 -> h:= 0.0 // terminate model

)

)

:: fall

]|

]|
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State event detection using symbolic solvers

model BounceBall() =

|[ cont h: real = 20.0

, v: real = 0.0

:: eqn dot h = v

, dot v = -10

|| |[ mode fall = ( h <= 0 -> v:= -0.5 * v; rise )

, mode rise = ( v <= 0 -> skip; fall )

:: fall

]|

]| -20
-15
-10
-5
 0
 5

 10
 15
 20

 0  1  2  3  4  5  6  7
time

bouncing_ball.chi

h
v

• Symbolic solvers derive a symbolic solution of the set of
equations until the exact time point of a state event (urgent
guard becomes true)

• Symbolic solvers work only for simple, well conditioned,
dynamics; e.g. constant derivatives ẋ = c , or bouncing ball
with g = 10 instead of g = 9.81

• Biggest problem is not the symbolic solution of complex
dynamics, but the symbolic solution of state events
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Numerical solvers

• Numerical solvers solve differential algebraic equations at
discrete time points only

• Between discrete time points linear or polynomial
interpolation (using multiple discrete points) is used

• Solutions are usually given with a predefined absolute and
relative accuracy; e.g. calculated value of x is c means that
error can be in the order of (c + εa)(1 + εr)

• Interval between discrete time points is the step size

• Step size can be fixed or variable
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State event detection using numerical solvers

State event detection by means of zero crossing detection / root
finding:

• Convert the state condition to a root function that calculates
the value of the variable minus the threshold

• When the root function crosses zero, the state event has been
located
E.g. V >= 2 -> n:= 1 leads to root function returning V - 2

Bert van Beek TU/e Simulation of Hybrid Systems 43/56



DC⇔CS Sim⇔Ver Chi Phenomena CIF nondet urg algorit algloop zeno state-ev time-ev instant

State event detection (3)

Efficient state event detection
/ zero crossing detection / root
finding:

h

0

20

time0 2

efficient iterative
detection of inter-
section with hori-
zontal axis (bounc-
ing ball)

• Solve the system of equations until beyond the threshold
crossing, keeping the dynamics unchanged

• Iteratively approach the exact point of threshold crossing
(root function returns zero)

• When the exact time point of the zero crossing (h = 0) has
been located, change the dynamics (e.g. at time point 2,
execute the assignment v:= -0.5 * v)
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Zero crossing detection problems (1)

V

Qin

Qo First empty the
tank, then fill it:

model ControlledTank()=

|[ var n: nat = 0, cont V: real = 10, alg Qi,Qo: real

:: eqn dot V = Qi - Qo

, Qi = n * 5

, Qo = sqrt(V)

|| V <= 0 -> n:= 1; V >= 10 -> n:= 0

]|

State event detection for V <= 0 leads to taking the root of a
negative number because of equation Qo = sqrt(V)!
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Zero crossing detection problems (2)

Solution, conditional expression / discontinuous right hand side:

model ControlledTank()=

|[ var n: nat = 0, cont V: real = 10, alg Qi,Qo: real

:: eqn dot V = Qi - Qo

, Qi = n * 5

, Qo = ( V >= 0 -> sqrt(V) | V < 0 -> 0 )

|| V <= 0 -> n:= 1; V >= 10 -> n:= 0

]|

Alternative syntax in other languages:
Qo = if V >= 0 then sqrt(V) else 0
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Simulation without zero crossing detection

If zero crossing detection in solver can be switched off (e.g.
Matlab/Simulink, Modelica), or if zero crossing detection is not
implemented:

• Variable step size numerical solver will decrease step size when
approaching the discontinuity
=⇒ large number of smaller and smaller steps when
approaching the discontinuity

• Fixed step size solver will overstep the discontinuity
=⇒ big numerical error near discontinuity
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Time events

Time events are easy for hybrid simulators:

• explicitly specified (absolute timing)

• or calculated by addition of time and intervals (relative timing)

model ControlledTank()=

|[ var n: nat = 0

, cont V: real = 10, alg Qi,Qo: real

:: eqn dot V = Qi - Qo

, Qi = n * 5

, Qo = sqrt(V)

|| time >= 2 -> n:= 1; delay 5; n:= 0

]|

• Absolute timing: at time point 2, the valve is opened
time >=2 -> n:= 1

• Relative timing: 5 units of time after that, the valve is closed
delay 5; n:= 0
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Instantaneous equations (1)

Discontinuities using actions (computer science approach):

• assignments

• instantaneous equations / action predicates / jump predicates

Instantaneous equations W : r

• more general than assignments

• predicate r relates values of variables before and after action

• W : set of variables that may change
(often not explicitly specified, but derived from r)

Examples instantaneous equations

• {x} : x = 1 means x := 1

• {x} : x = x− + 1 means x := x + 1
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Instantaneous equations (2)

Values of x before and after an action in different languages:

• x− and x , or x− and x+

• old x and x, or pre(x) and post(x)

Example colliding bodies:

model collision(m0,m1,c: real) =

|[ cont x0: real := 0.0, x1: real := 1.0

, v0: real := 0.0, v1: real := 0.0

:: eqn dot x0 = v0, dot v0 = 1

, dot x1 = v1, dot v1 = 0

|| x0 >= x1 ->

{v0,v1}: v0 - v1 = -c * (old v1 - old v0),

m0 * v0 + m1 * v1 = m0 * old v0 + m1 * old v1

]|

Newton’s collision rule and conservation of momentum at collision
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The compositional interchange format (CIF)

Developed in HYCON WP3 along with the interchange format for
piecewise linear systems.

Purpose:

• Establish inter-operability of a wide range of tools by means
of model transformations to and from the interchange formats

• Avoid the implementation of many bi-lateral translators
between specific formalisms

• Provide a generic modeling formalism and simulator for a wide
range of hybrid systems (CIF in particular)

If you develop tools for hybrid system analysis, the interchange
formats developed in HYCON could be useful:

• www.ist-hycon.org (WP3)

• for the CIF also: se.wtb.tue.nl/~vanbeek (publications)
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Examples of translations

Without the CIF:

Language A0

Language A1

Language A2

Language A3

Language B0

Language B1

Language B2

Language B3

With the CIF:

Language A0

Language A1

Language A2

Language A3

CIF

Language B0

Language B1

Language B2

Language B3
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Examples of applying the CIF

Language S

Simulate

CIF

Model checking
language M1

Verify

Model checking
language M2

CIF

Simulate
Model checking
language M1

Verify

Model checking
language M2
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Requirements of the CIF

• Formal and compositional semantics, based on (hybrid)
transition systems, allowing property preserving model
transformations

• Concepts based on mathematics, independent of
implementation aspects such as equation sorting, and
numerical equation solving algorithms

• Support arbitrary differential algebraic equations (DAEs),
including fully implicit equations, higher index systems,
algebraic loops, steady state initialization, switched systems
such as piecewise affine systems, and DAEs with
discontinuous right hand sides
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Requirements of the CIF

• Support a wide range of urgency concepts, such as used in
hybrid automata, including ‘urgency predicates’, ‘deadline
predicates’, ‘triggering guard semantics’, and ‘urgent actions’

• Support parallel composition with synchronization by means
of shared variables, shared actions, and CSP channels

• Support hierarchy and modularity to allow definition of
parallel modules and modules that can contain other modules
(hierarchy), and to allow the definition of variables and
actions as being local to a module, or shared between modules
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Three formats of the CIF

Abstract: Facilitates mathematical definition of the formal
semantics
CIF is defined as an automaton: (X , Xi, dtype, V , v0,
init, flow, inv, urgent, L, E ) and operators on the
automata for parallel composition, variable and action
abstraction, and urgent action definition

Concrete: Provides user friendly syntax, usable for modeling
directly in the CIF. Extensions for automaton definition
and instantiation. Semantics defined by means of
formal translations to the abstract format (in progress)

Transfer: Facilitates the file generation and parsing process. E.g.
XML format
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