
MODELING AND SIMULATION USING THE COMPOSITIONAL INTERCHANGE
FORMAT FOR HYBRID SYSTEMS

C. Sonntag1, R.R.H. Schiffelers2, D.A. van Beek2, J.E. Rooda2, S. Engell1
1Technische Universität Dortmund, Germany, 2Technische Universiteit Eindhoven, Netherlands

Corresponding author: C. Sonntag, Process Dynamics and Operations Group,
Dept. of Biochemical and Chemical Engineering, Technische Universität Dortmund 44227 Dortmund, Germany

c.sonntag@bci.tu-dortmund.de

Abstract. One of the major challenges towards a broad industrial acceptance of hybrid systems techniques
and tools is the large number of distinct modeling formalisms and the resulting manual effort for the tool-
based solution of many complex design or analysis tasks. A promising approach to achieve inter-operability
between hybrid systems tools is to develop automatic translations of their formalisms via a general inter-
change format with sufficiently rich syntax and semantics. This paper gives an intuitive introduction to such
a formalism, the Compositional Interchange Format (CIF) for general hybrid systems, that was recently de-
veloped within the European Network of Excellence HYCON. The concepts of the CIF are illustrated using
an interesting example, the hybrid model of a supermarket refrigeration system. This system exhibits both,
nonlinear DAE dynamics as well as significant discrete dynamics, and serves as a challenging case study for
hybrid control techniques in several European research projects. Furthermore, the CIF tool set that provides
simulation and visualization capabilities is introduced.

1 Introduction
In recent years, a large variety of techniques and tools have been developed to support the design and analysis of hybrid
systems, ranging from rather prototypical academic tools that mostly serve as test beds for hybrid systems research to
very mature and powerful modeling, simulation, design, and analysis environments. Most of these tools are based on dif-
ferent modeling formalisms that often possess specific features and semantics which are tailored to a certain application
domain or to the methods that are implemented by the tools. Due to the lack of a common unifying formal basis, most
tools can not be combined directly to solve a complex design or analysis problem. Hence, a tool-based solution of many
complex design or analysis tasks involves the manual translation between different modeling formalisms. Such trans-
lations are usually very time-consuming and require a profound familiarity with the underlying modeling formalisms,
and this problem is currently one of the major obstacles for a broader acceptance of hybrid systems tools in industrial
applications.

One possibility to achieve inter-operability between hybrid systems tools is to define bi-lateral transformations between
their underlying modeling formalisms. However, if the number of considered formalisms is large, this approach is
infeasible due to the large number of bi-lateral transformations that must be defined (see Fig. 1 (a)). If instead a generic
modeling formalism (an interchange format) is defined that is general and rich enough to represent the syntactic and
semantic properties of the modeling languages under consideration, the implementation effort is reduced drastically, as
shown in Fig. 1 (b).

The integration of hybrid systems tools via interchange formats has been investigated in several research projects. In the
DARPA MOBIES project, the Hybrid Systems Interchange Format (HSIF) was defined [1] that employs a network of
hybrid automata for model representation, and the abstract semantics of an interchange format based on the Metropolis
meta model [2] is described in [3]. More recently, the Compositional Interchange Format (CIF) [4, 5] for a general class
of hybrid systems has been developed within the European Network of Excellence HYCON [6].

The CIF has been developed with two major purposes in mind - to provide a generic modeling formalism (and appropri-

(a) (b)

Figure 1: Model transformations without (a) and with (b) an interchange format.

ate tools) for a wide range of general hybrid systems, and to establish inter-operability of a wide range of tools by means
of model transformations. The CIF language contains, among others, modeling primitives for the specification of:

• Different classes of variables (discrete, continuous, and algebraic) that differ in their allowed continuous-time
behavior (trajectories) during time passing as well as during instantaneous changes (e.g. assignments).

• Continuous dynamics that are specified as fully implicit DAEs.

• Steady-state initialization, where the initial state is the solution of the set of DAEs such that all derivatives equal
zero.

• Different kinds of urgency (urgency allows/restricts the passing of time up to a certain point), including many
urgency concepts found in literature such as invariants from hybrid (and timed) automata, triggering guards,
deadline predicates, and urgent actions.

• Interaction between parallel processes using different mechanisms, such as shared variables, synchronizing ac-
tions, and communication via channels.

• Structural information, such as classification of variables as input, output, and/or internal and external.

• Process re-use (automaton definition/instantiation) and hierarchy.

As the name indicates, the CIF is equipped with formal semantics that is compositional, i.e. the semantics of a model
component is entirely specified in terms of the semantics of its subcomponents. The CIF mainly differs from the HSIF
and from the METROPOLIS-based format in that its formal semantics defines the mathematical meaning of a hybrid
model and is independent of implementation issues and limitations, such as e.g. circular dependencies and algebraic
loops. The CIF serves as the basis of the new European research project MULTIFORM [7] whose main objective is the
integration and the support for interoperability of tools and methods based on different modeling formalisms in order to
make a significant step towards integrated coherent tool support for the design of large complex controlled systems from
the first concept to the implementation and further on over their entire life cycle. Within MULTIFORM, algorithms
and tools for the translation to/from the CIF will be defined for a large variety of modeling languages, including CHI,
GPROMS, MATLAB/SIMULINK, MODELICA, MUSCOD-II, PHAVER, and UPPAAL.

The aim of this paper is twofold: (1) to give an intuitive introduction to the CIF concepts using a complex example,
a supermarket refrigeration system under logic control, and (2) to introduce the freely available CIF tool set that was
developed recently (see also [8]). In Section 2, the controlled supermarket refrigeration system is described. A hybrid
CIF model of this system is specified in Section 3. The tool set and simulation results for the supermarket refrigeration
system are detailed in Section 4, and Section 5 concludes the paper.

2 A Supermarket Refrigeration System under Logic Control
In this paper, the concepts of the CIF are illustrated using a complex case study, the hybrid model of an industrial
supermarket refrigeration system under logic control. Supermarket refrigeration systems are used in most supermarkets
to cool edible goods in (often open) display cases to avoid deterioration and to enable easy access for the customers.
These systems are hybrid systems due to switching of the continuous dynamics and due to the presence of discretely
switched actuators such as expansion valves and compressors. The supermarket refrigeration system considered here is a
central industrial case study for hybrid control design techniques in both, the HYCON and the MULTIFORM projects
(see e.g. [9, 10, 11, 12]). It represents an excellent example for the illustration of the CIF concepts since it exhibits both,
complex nonlinear DAE dynamics and significant discrete dynamics.

Fig. 2 (a) shows a schematic representation of a supermarket refrigeration system. It consists of four major parts: several
display cases (two in this case), a compressor rack, a suction manifold, and a condenser. After the liquid refrigerant has
been supplied to the display cases through inlet valves, it evaporates and removes heat from the air around the evaporator.
The resulting vapor accumulates in the suction manifold and is fed to the condenser via the compressors which increase
the pressure of the refrigerant vapor. The thermal energy from the display cases can be removed in the condenser at
room temperature since the evaporation temperature of the refrigerant increases with the pressure. Finally, the liquefied
refrigerant is fed back to the display cases. The cross-section of an open refrigerated display case is shown in Fig. 2 (b).
Cold air is circulated through the display case and forms an air curtain in front of the edible goods. Thermal energy is
transferred from the goods to the air curtain (Q̇g−a) and, since the temperature of the surrounding air is larger than that of
the air curtain, the curtain also absorbs heat from the surroundings (Q̇load). The absorbed thermal energy is transported
to the evaporator (Q̇a−w) in which the refrigerant evaporates and thus takes on the thermal energy (Q̇e)1.

A model of this system with hybrid dynamics was proposed in [9]. In this model, each display case i, i ∈ (1, . . .ndc),
is described by four continuous state variables: the temperature of the goods (Tg,i), the temperature of the evaporator
wall (Tw,i), the temperature of the air inside the case (Ta,i), and the mass of liquid refrigerant within the evaporator of the

1Note that in this paper, the time derivative of a variable x is denoted by dx
dt while a dotted symbol ẋ refers to a flow of mass or energy.

(a)

Ta

Tg

Qg-a

.
Qload

.

Tw
Te

Qe

.

Qa-w

.

(b)

Figure 2: A simplified scheme of a supermarket refrigeration system with two display cases (left, taken from [9]) and the cross
section of a display case (right).

display case (mr,i). Here, ndc is the number of display cases. The dynamics of the condenser unit is not modeled. The
pressure in the suction manifold is denoted by Psuc, vi ∈ {v1, . . . ,vndc} denotes the state of the inlet valve (closed/open)
for the refrigerant of display case i, and vc j ∈ {vc1, . . . ,vcnc} denotes the state of compressor j (off/on), where nc is the
number of compressors in the compressor rack.

The continuous dynamics is modeled by a lumped-parameter ODE system2 under the assumption that all display cases
are of equal design. The amount of refrigerant in a display case i and the current state of the corresponding inlet valve vi
influence the dynamics of the mass of refrigerant in the display case mr,i according to

dmr,i

dt
=





mrmax−mr,i
τ f ill

if vi = 1, (a)

− Q̇e,i
∆hlg(Psuc)

if vi = 0. (b)
(1)

Here, the maximum amount of refrigerant each display case can accommodate is represented by mrmax, Q̇e,i is defined in
Eq. 3, the specific enthaply of evaporation of the remaining liquefied refrigerant in the evaporator is given by ∆hlg(Psuc),
and τ f ill is a time constant. The display case is filled with refrigerant as long as the inlet valve is open (Eq. 1.a), and after
the inlet valve has been closed, the remaining refrigerant evaporates according to Eq. 1.b. The temperature dynamics
within the i-th display case is given by:

dTg,i

dt
=− Q̇g−a,i

mg · cpg
,

dTw,i

dt
=

Q̇a−w,i− Q̇e,i

mw · cpw
,

dTa,i

dt
=

Q̇g−a,i + Q̇load − Q̇a−w,i

ma · cpa
, (2)

with

Q̇g−a,i = UAg−a · (Tg,i−Ta,i) , Q̇a−w,i = UAa−w · (Ta,i−Tw,i) , Q̇e,i = UAw−r(mr,i) · (Tw,i−Te(Psuc)) . (3)

Here, UAw−r(mr,i) = UAw−rmax ·mr,i/mrmax, and mg, mw, ma, cpg, cpw, cpa, UAg−a, UAa−w, and UAw−rmax are constant
model parameters. Te(Psuc) is the evaporation temperature of the refrigerant. The dynamics of the suction pressure is
given by

dPsuc

dt
=

ṁin−suc + ṁrconst −V̇c ·ρsuc(Psuc)

Vsuc · dρsuc
dPsuc

(Psuc)
with ṁin−suc =

ndc

∑
i=1

Q̇e,i

∆hlg(Psuc)
, V̇c = ηvol ·Vd ·

nc

∑
i=1

vci

nc︸ ︷︷ ︸
ccap

. (4)

The total mass flow of refrigerant from all display cases into the suction manifold is given by ṁin−suc, and ṁrconst is
an external disturbance that represents an additional flow of refrigerant from other unmodeled cooling facilities into the
suction manifold. ρsuc(Psuc) is a nonlinear refrigerant-dependent function modeling the density of the vapor in the suction
manifold, and the volume flow V̇c from the suction manifold is computed using the constant model parameters ηvol and

2See [9] for a more detailed description of the model.

ttrw,1 trw,2 trw,3 trw,4 trw,5 trw,6 tw,7 tw,8

logic condition changes trem tcycle

read write

Figure 3: Schematic representation of the cycle-driven execution model for PLCs. It is assumed that reading and writing occurs
simultaneously at the time instants trw,i, and that tcycle is constant.

Vd and the displacement capacity ccap of the running compressors in relation to the overall number of compressors nc in
the system. Here, it is assumed that all compressors are of equal capacity.

The controlled variables of the system are the pressure inside the suction manifold (Psuc) and the temperatures of the air
inside the display cases (Ta,i). As the system never reaches a steady state, the control goal is not to track setpoints, but
to maintain these variables within specified bounds. This is usually achieved by switching the discrete inputs depending
on logic conditions that are defined over the continuous variables of the system. In industry, such logic controllers
are typically described using dedicated programming languages, such as Function Block Diagram (FBD) or Sequential
Function Chart (SFC) [13] which can then be implemented in a Programmable Logic Controller (PLC), a specialized
hardware control system. These systems usually operate in a cyclic execution mode in which (1) the input variables
are read, (2) the control program is executed, and (3) the output variables are assigned new values. This means that the
inputs and the outputs are only updated at constant or varying time intervals. In the setting that is illustrated in Fig. 3,
an update of the input and output variables is executed only at the time instants trw,i with a constant cycle time tcycle.
The change of the (value of a) logic condition is only recognized by the control system after a delay of trem time units,
and since the execution of the control program takes another cycle, the reaction to the input change only occurs after
trem + tcycle time units. An algorithm has been developed that automatically translates a logic controller given as an SFC
(including the cyclic PLC execution model) into a hierarchical CIF model in a procedure that resembles the approach
described in [14, 15, 16]. However, since the description of the complete translation scheme is beyond the scope of this
paper, here a simplified control system (including a cyclic execution model) is used. This control system was designed
for a supermarket refrigeration system with two display cases and two compressors and is shown in Fig. 4.

3 Modeling the Supermarket Refrigeration System using the CIF
A CIF model can be specified using two different formats: 1) the abstract format that formally defines the syntax
and semantics of a CIF model in terms of an interchange automaton in a mathematically sound way and thus enables
correctness proofs of translations to/from other formalisms, and 2) the concrete format that provides a user-friendly
syntax that adds the concepts of hierarchy and reusability, improves the readability of CIF models, and thus facilitates
the manual modeling process. The semantics of the concrete format is defined by means of a mapping to the abstract
format, see [17], whereas the formal semantics of the abstract format is defined in a structured operational semantics
(SOS) style [18], see [5]. In this paper, we do not use the CIF as an interchange formalism, but we illustrate its usability
as a generic modeling formalism. Therefore, we use the concrete format to model the supermarket refrigeration system.

In the remainder of this section, the model is described, where the syntax and semantics of language elements are
explained informally at their first usage3. For clarification, a graphical representation of the same CIF model is shown
in Fig. 4. In this figure, a model (or automaton instantiation) is represented as a solid box that is labeled with the name
of the model (or automaton instantiation). Its internal declarations are listed in the upper left corner, and its external
declarations are represented as ports on the borders of the box. The shape of a port depends on the type of declaration
(see legend).

The model definition called supermarket is as follows:

model supermarket =
|[extern var T_a1, T_a2, P_suc : cont real = (277.5, 274.5, 1.4)

; v_1, v_2, v_c1, v_c2 : disc bool = (false, false, true, false)
intern var T_g1, T_g2, T_w1, T_w2 : cont real = (275, 275, 273, 273)

; m_r1, m_r2 : cont real = (0.3, 0.5)
; Q_load, m_rconst : disc real = (3000, 0.2)

connect {T_g1, dc1.T_g}, {T_g2, dc2.T_g}
, {T_w1, dc1.T_w}, {T_w2, dc2.T_w}
, {T_a1, dc1.T_a, contr.T_a1}, {T_a2, dc2.T_a, contr.T_a2}
, {P_suc, sm.P_suc, dc1.P_suc, dc2.P_suc, contr.P_suc}
, {v_c1, sm.v_c1, contr.v_c1}, {v_c2, sm.v_c2, contr.v_c2}

3Note that the description of the concrete format in this paper is non-exhaustive. Please refer to [17] for a more detailed description of the complete
specification.

when not m11=g11
or not m12=g12

or not m21=g21

or not m22=g22
or not m3=g3

or not m4=g4

moni
tor

now do (m11,m12,m21,
m22,m3,m4,c, trem)

:= (g11,g12,g21,g22,g3,g4,
0, tcycle– time mod tcycle)

when
c > tcycle

+ trem

now

act exec

model supermarket

sm : suctionmanifold

Dyn

Eq. 4

intern var Tg,1, Tg,2, Tw,1, Tw,2, mr,1, mr,2 : cont real = (275,275,273,273,0.3,0.5)
; Qload, mrconst : disc real = (3000,0.2)

Qe,1

.

.

intern var Vsuc, Vd, ?vol : disc real = (5,0.08,0.81)

; , ccap : alg real

vC1 vC2

dc1

displaycase

vC1 vC2

v2

Tg,2

Ta,2

mrconst

valve2C

valveController

Ta

vcompC : compController

c1_on

when g4

act exec

do vC1 := true

when g3

act exec

do vC2

:= false

when g4

act exec

do vC2 := true

when g3

act exec

do vC1 := false

both
on

both
off

when not g4

and not g3

act exec

when not g4

act exec

when not g3

act exec

trigger : triggerMonitor

intern var m11, m12, m21, m22, m3, m4

: disc bool = (false,…,false)

; tcycle, trem : disc real = (5,0)

intern clock c

trig
ger

Legend: Guards:

closed scope open scope external action label g11: Ta,1 275 K

g12: Ta,2 275 K

g3: Psuc 1.1 bar

g4: Psuc 1.6 barinput variable output variable external variable

Ta,1
: cont real

= 277.5

Ta,2
: cont real

= 274.5

Psuc
: cont real

= 1.4

v1
: disc bool

= false

v2
: disc bool

= false

vC1
: disc bool

= true

vC2
: disc bool

= false

.

automaton displaycase

intern var UAg-a, UAa-w, UAw-rmax, mg, cpg, mw, cpw, ma, cpa, mrmax, tfill : disc real
= (300,500,4000,200,1000,260,385,50,1000,1,40)

; Qg-a , Qa-w , UAw-r , Te , UAa-w , UAa-w , : alg real
..

Tdyn
Eqs. 1, 2, 3

automaton valveController Ta

v

Off

.
Qload

Tg Tw Tav mr Psuc

Qe

.

On

when (Ta 278) act exec

do v := true

when (Ta 275) act exec

do v := falsewhen not (Ta 278)

act exec

when not

(Ta 275)

act exec

exec

dc2

displaycase

.
Qload

Tg Tw Ta

v

mr Psuc

Qe

.

Tw,2 Ta,2 mr,2 PsucTg,1

Tg Tw Ta mr Psuc

Tw,1 Ta,1 mr,1 Psuc

Qe

.
Qe,2

. .
Qload

v

Psuc

v1Ta,1

valve1C

valveController

Ta

v

exec exec

execexec

g21: Ta,1 278 K

g22: Ta,2 278 K

Psuc

Ta,1

Ta,2

Psuc

contr : controller

Figure 4: A graphical representation of the CIF model of the supermarket refrigeration system with two display cases and two
compressors.

, {v_1, dc1.v, contr.v_1}, {v_2, dc2.v, contr.v_2}
, {Q_load, dc1.Q_load, dc2.Q_load}, {m_rconst, sm.m_rconst}
, {m_r1, dc1.m_r}, {m_r2, dc2.m_r}, {sm.Q_e1, dc1.Q_e} , {sm.Q_e2, dc2.Q_e}

:: dc1 : displayCase
|| dc2 : displayCase
|| sm : suctionManifold
|| contr : controller
]|

The model definition consists of external variable declarations, internal variable declarations, connect sets and (a parallel
composition of) automaton instantiations modeling the suction manifold, the display cases and the controller, respec-
tively. A variable declaration contains the name of the variable, its dynamic type that can be discrete (disc), continuous
(cont), or algebraic (alg), and its static type, such as real denoting a real number, or bool denoting a boolean, and
optionally its initial value.

The main differences between discrete, continuous, and algebraic variables are as follows: First, the values of discrete
variables remain constant when model time progresses, the values of continuous variables may change according to a
continuous function of time when model time progresses, and the values of algebraic variables may change according
to a discontinuous function of time. Second, the values of the discrete and continuous variables do not change in action
transitions unless such changes are explicitly specified, for example by assigning a new value. The values of algebraic
variables can change arbitrarily in action transitions, unless such changes are explicitly restricted, for example by assign-
ing a new value. Third, there is a difference between the different classes of variables with respect to how the resulting
values of the variables in a transition relate to the starting values of the variables in the next transition. The resulting
value of a discrete or continuous variable in a transition always equals its starting value in the next transition. For alge-
braic variables, there is no such relation. In most models, the values of discrete variables are defined by assignments,
whereas the values of algebraic variables are defined by invariants ((in)equalities).

An automaton instantiation contains a label and the name of the automaton definition to be instantiated. The label is
used as a prefix to refer to the variables that are declared as external in the automaton definition. E.g. dc1.T_g denotes
the temperature of the goods in display case dc1.

A connect set connects the contained variables. As an example, the variable identifiers T_g1 and dc1.T_g denote the
same variable since they are within the connect set {T_g1, dc1.T_g}.

A display case is modeled by means of an instantiation of the automaton definition displayCase. The input variables v
and Q_load model the state of the inlet valve of the case and the absorbed heat from the surroundings. These variables
are modeled as input variables since they are considered as inputs for the display case. The body of the automaton
definition consists of a single mode that is used to model the continuous-time dynamics of the system. Each mode can
be labeled with flow predicates and invariant predicates. The flow predicates usually contain the ODE, and the invariant
predicates usually contain the algebraic constraints that should hold during time-passing. Unlike other hybrid automata
formalisms, there is no semantic distinction between these two types of predicates. The flow and invariant predicates
should always hold (during time-passing as well as when entering the mode). In the model, mode Tdyn contains as flow
the predicates from Eq. 2, and as invariant the predicates from Eqs. 1 and 3.

automaton displayCase =
|[input var v : bool

; Q_load : real
extern var T_g, T_w, T_a, m_r, P_suc : cont real

; Q_e : alg real
intern var UA_g_a, UA_a_w, UA_w_rmax : disc real = (300, 500, 4000)

; m_g, cp_g : disc real = (200, 1000)
; m_w, cp_w : disc real = (260, 385)
; m_a, cp_a : disc real = (50, 1000)
; m_rmax, tau_fill : disc real = (1, 40)
; Q_g_a, Q_a_w, UA_w_r, T_e, delta_h_lg : alg real

:: |(mode Tdyn =
flow dot T_g = - Q_g_a / (m_g * cp_g)

& dot T_w = (Q_a_w - Q_e) / (m_w * cp_w)
& dot T_a = (Q_g_a + Q_load - Q_a_w) / (m_a * cp_a)

inv Q_g_a = UA_g_a * (T_g - T_a)
& Q_a_w = UA_a_w * (T_a - T_w)
& Q_e = UA_w_r * (T_w - T_e)
& UA_w_r = UA_w_rmax * m_r / m_rmax
& T_e = -4.3544 * P_suc^2 + 29.2240 * P_suc - 51.2005 + 273.15
& delta_h_lg = (0.0217 * P_suc^2 - 0.1704 * P_suc + 2.2988) * 100000
& dot m_r = (v -> (m_rmax - m_r) / tau_fill

| not v -> -Q_e / delta_h_lg
)

:: Tdyn
)|

]|

The switching dynamics for dot m_r that depend on the value of variable v is defined by means of a conditional
expression.

The suction manifold is modeled by means of automaton definition suctionManifold.

automaton suctionManifold =
|[input var v_c1, v_c2 : bool

; m_rconst : real
extern var P_suc : cont real

; Q_e1, Q_e2 : alg real
intern var rho_suc, del_rho_suc_P_suc, delta_h_lg, c_cap : alg real

; V_suc, V_d, n_vol : disc real = (5, 0.08, 0.81)
:: |(mode Dyn = inv dot P_suc = ((Q_e1 + Q_e2) / delta_h_lg + m_rconst -

(n_vol * V_d * c_cap) * rho_suc)
/ (V_suc * del_rho_suc_P_suc)

& rho_suc = 4.6073 * P_suc + 0.3798
& del_rho_suc_P_suc = -0.0329 * P_suc^3 + 0.2161 * P_suc^2 -

0.4742 * P_suc + 5.4817
& delta_h_lg = (0.0217 * P_suc^2 - 0.1704 * P_suc + 2.2988)

* 100000
& c_cap = (not v_c1 -> 0 | v_c1 -> 0.5) +

(not v_c2 -> 0 | v_c2 -> 0.5)
:: Dyn
)|

]|

It consists of a single mode definition with Eq. 4 as invariant.

The controller consists of two valve controllers, a compressor controller, and a trigger-monitor automaton.

automaton controller =
|[input var T_a1, T_a2, P_suc : real

output var v_1, v_2, v_c1, v_c2 : disc bool
connect {T_a1, trigger.T_a1, valve1C.T_a}, {T_a2, trigger.T_a2, valve2C.T_a}

, {P_suc, trigger.P_suc, compC.P_suc}
, {v_1, valve1C.v}, {v_2, valve2C.v}
, {v_c1, compC.v_c1}, {v_c2,compC.v_c2}
, {trigger.exec, valve1C.exec, valve2C.exec, compC.exec}

:: trigger : triggerMonitor
|| valve1C : valveController
|| valve2C : valveController
|| compC : compController
]|

The controller adjusts the state of the inlet valves of the refrigerant of the display cases (v_1, v_2) as well as the state of
the compressors (v_c1, v_c2). Hence, these variables are declared as output variables.

The trigger-monitor automaton triggers the events (threshold crossings) of the system. It consists of two modes and
two edges. Clock variable c is used to model time-passing until the next cycle time of the PLC. The initial value of a
clock variable equals 0, and during time-passing, its value changes with rate 1. Clock variables can be reset by means of
assignments labeled on edges (see below).

An edge when guard now act action do assignment goto targetmode starts with the keyword when, followed by a
(optional) guard (boolean expression). If the value of the guard evaluates true, the edge is enabled. The (optional)
keyword now denotes that the edge is urgent, which means that time-passing is not allowed when the guard evaluates
true. When the edge is taken, it executes the action act (if the action is omitted, it executes a pre-defined action tau), while
updating the value of the variables according to the (optional) assignment. Finally, the mode targetmode is enabled.4

4In Fig. 4, modes are visualized by means of circles labeled with the name of the mode, and edges are represented as arrows between modes and
are labeled with their guard, action, and update (see below). If the edge is urgent, the arrow is also labeled with the the keyword now. A connect
set is represented as one or more lines connecting the ports that belong to the elements of the connect set. If two ports have the same name, they are
connected implicitly, and a line may be omitted.

automaton triggerMonitor =
|[input var T_a1, T_a2, P_suc : real

intern var m11,m21,m12,m22,m3,m4 : disc bool = (false, false, false, false, false, false)
; t_cycle, t_rem : disc real = (5, 0)

intern clock c
extern act exec

:: |(mode monitor = when m11/=(T_a1 <= 275) or m21/=(T_a1 >= 278) or
m12/=(T_a2 <= 275) or m22/=(T_a2 >= 278) or
m3/=(P_suc <= 1.1) or m4/=(P_suc >= 1.6)

now do
(m11, m21, m12, m22, m3, m4, c, t_rem) :=
(T_a1 <= 275, T_a1 >= 278, T_a2 <= 275, T_a2 >= 278,
P_suc <= 1.1, P_suc >= 1.6, 0, 2*t_cycle - time mod t_cycle)

goto trigger
, trigger = when c >= t_rem now act exec goto monitor

:: monitor
)|

]|

In the trigger automaton, time passes in mode monitor until a threshold is crossed. Then, the assignment is executed, and
subsequently time passes until c >= t_rem. The action exec is executed synchronously with the valve and compressor
controllers since they all share the action exec. Note that the controller automata are only triggered if a guard condition
has changed and not in every cycle of the PLC. Since the cycle time of the logic controller is usually much smaller than
the time scale of the plant, this event-driven simulation approach provides a considerable performance advantage over
the cycle-driven approach in which the controller automata are executed after every time cycle of the PLC.

The six internal discrete boolean memory variables used in this automaton definition enable a concise description of this
trigger automaton. Without these discrete variables, one would need an automaton for each OR-clause of the guard of the
edge (m11/=(T_a1 <= 275) or ... or m4/=(P_suc >= 1.6)). This would result in 6 automata, each containing
4 locations and 6 edges. Alternatively, one could use a single automaton with 128 (=26+1) locations and 4096 (= 26+1

2 ·26)
edges.

The valve controllers switch the inlet valves of the display cases to keep the air temperatures within a tight region.

automaton valveController =
|[input var T_a : real

output var v : disc bool
extern act exec

:: |(mode Off = when T_a >= 278 act exec do v := true goto On
when not T_a >= 278 act exec goto Off

, On = when T_a <= 275 act exec do v := false goto Off
when not T_a <= 275 act exec goto On

:: Off
)|

]|

The valves are closed initially. If the air temperature Ta in the corresponding display case exceeds an upper threshold,
the valve controllers open the valves to reduce the temperature (T_a >= 278) when the exec action is initiated. As soon
as the temperatures have dropped to 275 K (T_a <= 275), the valves must be closed again (triggered by exec) to avoid
the freezing of the edible goods.

The compressor controller adjusts the state of both compressors.

automaton compController =
|[input var P_suc : real

output var v_c1, v_c2 : disc bool
extern act exec

:: |(mode c1_On = when P_suc >= 1.6 act exec do v_c2 := true goto bothOn
when P_suc <= 1.1 act exec do v_c1 := false goto bothOff
when not P_suc >= 1.6 and not P_suc <= 1.1 act exec goto c1_On

, bothOn = when P_suc <= 1.1 act exec do v_c2 := false goto c1_On
when not P_suc <= 1.1 act exec goto bothOn

, bothOff = when P_suc >= 1.6 act exec do v_c1 := true goto c1_On
when not P_suc >= 1.6 act exec goto bothOff

:: c1_On
)|

]|

Initially, compressor 1 is switched on (mode c1_On). When the exec action is initiated and the suction pressure exceeds
1.6 (P_suc >= 1.6), compressor 2 is switched on (v_c2 := true). In case the suction pressure is lower than 1.1 bar,
compressor 1 is shutdown (mode bothOff). If the suction pressure is between 1.1 bar and 1.6 bar, the states of both
compressors remain unchanged. Similar behavior is modeled in modes bothOn and bothOff.

4 Tooling for the CIF
To support the design and analysis of CIF models, the following tools have been developed:

• a compiler that takes as input a CIF model specified in the concrete format and translates it to a CIF model in the
abstract format. It implements the mapping as defined in [17].

• a model visualizer that takes as input a CIF model specified in the abstract format and visualizes it graphically.

• a stepper that takes as input a CIF model specified in the abstract syntax and calculates its dynamic behavior
resulting in a hybrid transition system that consists of action and time transitions. It implements the SOS rules as
defined in [5].

• a simulator that provides a front-end to the stepper. Several options exist to customize the output of the simula-
tor, such as the visualization of the trajectories of the model variables during and/or after the simulation, or the
visualization of the performed discrete actions.

For simulation purposes, a concrete CIF model is first mapped into the abstract format using the compiler. The action
and delay transitions are calculated using symbolic and/or numerical solvers. The simulator can be run in different
modes:

• User-guided mode: In this mode, the simulator shows all possible transitions, and the user may choose which
transition to execute.

• Automatic mode: In this mode, the non-deterministic choices between transitions are resolved automatically by
the simulator, or the simulator can simulate all possibilities (exhaustive simulation/state-space generation).

In both modes, the simulator can be parameterized with the solvers to be used, including solver-specific options, and the
requested simulation output.

The CIF toolset is designed in such a way that it can be integrated with third-party tools. The main reason for this is to
re-use existing applications and libraries. For the implementation of the tools, the PYTHON [19] programming language
and several PYTHON packages have been used.

For visualization of a CIF model specified in the abstract format, the graph-filtering and graph-rendering tools of
GRAPHVIZ [20] are used. GRAPHVIZ is an open toolkit for graph visualization. It is developed at AT&T Labs Re-
search. The GRAPHVIZ tools use a common language to specify attributed graphs. This language is called Libgraph,
but it is probably better known as the dot format, after its best-known application.

For the computation of solutions for a) discrete updates to model variables (e.g. assignments), b) the initialization
problem (IP) and c) the initial-value problem (IVP), the symbolic solving capabilities of the mathematical software
package MAPLE [21] can be used. More specifically, explicit equations and boolean expressions are evaluated using
PYTHON, and implicit equations and algebraic loops are solved by MAPLE. For the IVP, numerical solutions can be
obtained using the numerical solver DASSL [22]. For the visualization of simulation results, in particular the trajectories
of the model variables, the portable command-line driven interactive data and function plotting utility GNUPLOT [23] is
used.

The CIF simulator was used to simulate the model of the supermarket refrigeration system. The simulation results are
shown in Fig. 5. Evidently, the switching of the valves and of the compressors meet the expected pattern, and the time
trajectories are similar to those that were obtained with other simulation tools. In particular, Fig. 5 (b) demonstrates
the accuracy of the simulator since it shows that the logic controller switches off the second compressor exactly after
trem + tcycle time units have elapsed since the threshold crossing of Psuc. The simulation took about 3 minutes on an
average desktop PC.

5 Conclusions and Outlook
In this paper, a recently developed interchange format for hybrid systems, the Compositional Interchange Format (CIF),
is presented, and its concepts are described using a realistic and interesting modeling example, a supermarket refrig-
eration system under logic control. The CIF supports a very general class of hybrid systems and encompasses many
sophisticated concepts, such as fully implicit DAE dynamics, different urgency concepts, parallel composition, re-use,
and hierarchy. CIF models can be visualized and simulated using the CIF tool set that was implemented in PYTHON.

0 500 1000 1500 2000 2500 3000 3500

off

on

272

273

274

275

276

277

278

time [s]

[K
]

278

275Ta,1

Ta,2

v
1

v
2

0 500 1000 1500 2000 2500 3000 3500

off

on

1,1

1,2

1,3

1,4

1,5

1,6

time [s]

[b
ar

]

Psuc

vc1

vc2

1.6

1.1

1695 1700 1705 1710 1715 1720
time [s]

v
c2

v
c1

Psuc

(a) (b) (c)

crossing read write

trem tcycle

Figure 5: Simulation results: (a) suction pressure and compressor settings, (b) a zoomed version of (a), and (c) air temperatures
and valve settings. The cycle time was set to tcycle = 5 s.

The CIF simulator supports both, numerical simulation (using DASSL) and symbolic simulation (using MAPLE), and
the CIF visualizer is based on the open visualization toolkit GRAPHVIZ.

Within the new European research project MULTIFORM [7], the main objective of which is the integration and the
support for inter-operability of tools and methods based on different modeling formalisms, translations will be defined
for a large variety of modeling languages, including CHI, GPROMS, MATLAB/SIMULINK, MODELICA, MUSCOD-II,
PHAVER, and UPPAAL. Using these (and future) translations, we expect that the CIF will help to significantly increase
the applicability of hybrid systems techniques in industrial practice.

6 Acknowledgements
This work was partially done in the framework of the HYCON Network of Excellence, contract number FP6-IST-
511368, and as part of the Darwin project under the responsibility of the Embedded Systems Institute, partially supported
by the Netherlands Ministry of Economic Affairs under the BSIK program, as part of the ITEA project Twins 05004,
and as part of the Collaborative Project MULTIFORM, contract number FP7-ICT-224249.

7 References
[1] MoBIES team: HSIF semantics. Technical report, University of Pennsylvania (2002) internal document.
[2] Metropolis Project Team: The Metropolis meta model. Technical Report UCB/ERL M04/38, University of

California, Berkeley (2004) internal document.
[3] Pinto, A., Carloni, L.P., Passerone, R., Sangiovanni-Vincentelli, A.L.: Interchange format for hybrid systems: Ab-

stract semantics. In Hespanha, J.P., Tiwari, A., eds.: Hybrid Systems: Computation and Control, 9th International
Workshop. Volume 3927 of Lecture Notes in Computer Science., Santa Barbara, Springer-Verlag (2006) 491–506

[4] Beek, D.A.v., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Foundations of an interchange format for hybrid
systems. In Bemporad, A., Bicchi, A., Butazzo, G., eds.: Hybrid Systems: Computation and Control, 10th
International Workshop. Volume 4416 of Lecture Notes in Computer Science., Pisa, Springer-Verlag (2007) 587–
600

[5] Beek, D.A.v., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Revised hybrid system interchange format. Tech-
nical Report D3.6.3 to the NoE HYCON (2007) http://www.bci.tu-dortmund.de/dyn/hycon3/D363.pdf.

[6] HYCON: Hybrid Control - Taming Heterogeneity and Complexity of Networked Embedded Systems:
http://www.ist-hycon.org (2008)

[7] MULTIFORM: Integrated Multi-formalism Tool Support for the Design of networked Embedded Control Sys-
tems: http://www.ict-multiform.eu (2008)

[8] Systems Engineering Group TU/e: CIF toolset. http://se.wtb.tue.nl/sewiki/cif (2008)
[9] Larsen, L.F.S., Zamanabadi, R.I., Wisniewski, R., Sonntag, C.: Supermarket refrigeration systems - a bench-

mark for the optimal control of hybrid systems. Technical report for the Network of Excellence HYCON (2007)
http://tinyurl.com/23nrkc.

[10] Larsen, L.F.S., Thybo, C., Izadi-Zamanabadi, R., Wisniewski, R.: Synchronization and desynchronizing control
schemes for supermarket refrigeration systems. In: Proc. IEEE Multi-Conf. on Systems and Control (MSC /
CCA). (2007) 1414–1419

[11] Sonntag, C., Devanathan, A., Engell, S.: Hybrid NMPC of a supermarket refrigeration system using sequential
optimization. In: Proc. 17th IFAC World Congress. (2008) 13901–13906

[12] Sarabia, D., Capraro, F., Larsen, L.F.S., De Prada, C.: Hybrid NMPC of supermarket display cases. To appear in:
Control Engineering Practice (2009)

[13] International Electrotechnical Commission (IEC): IEC 61131-3: Programmable Controllers - Programming Lan-
guages. (2003)

[14] Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M., Stursberg, O.: Verification of
PLC programs given as Sequential Function Charts. In: Integration of Software Specification Techniques for
Applications in Engineering. Volume 3147 of LNCS. (2004) 517–540

[15] Stursberg, O., Lohmann, S.: Analysis of logic controllers by transformation of SFC into timed automata. In: Proc.
44th IEEE Conf. on Decision and Control / European Control Conference. (2005) 7720–7725

[16] Lohmann, S., Stursberg, O., Engell, S.: Comparison of event-triggered and cycle-driven models for verifying SFC
programs. In: Proc. American Control Conference. (2007) 3606–3611

[17] Beek, D.A.v., Reniers, M., Rooda, J.E., Schiffelers, R.R.H.: Concrete syntax and semantics of the compositional
interchange format for hybrid systems. In: 17th Triennial World Congress of the International Federation of
Automatic Control, Seoul, Korea (2008)

[18] Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming
60-61 (2004) 17–139

[19] Python: http://www.python.org (2005)
[20] Emden, R.G., North, S.C.: An open graph visualization system and its applications to software engineering.

Software – Practice and Experience 30 (2000) 1203–1233
[21] MapleSoft: http://www.maplesoft.com (2005)
[22] Petzold, L.R.: A description of DASSL: A differential/algebraic system solver. Scientific Computing (1983)

65–68
[23] Gnuplot: http://www.gnuplot.info (2005)

