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Abstract

For the design of large industrial systems, usually many different modelling languages are required. Currently, different
projects aim at the development of standards that enable interaction between simulation models written in different
languages. The Chi project aims at providing one language suited to modelling, simulation and control of systems from
different application domains. Models may range from pure continuous-time models to pure discrete-event models,
and any combination of the two. Due to the orthogonal design of the Chi language and careful selection of the language
primitives, the core of the language is small. At the same time, the high-level data modelling constructs and high-level
behaviour modelling constructs provide the modeller with expressive power. Verification of Chi models is currently
limited to discrete-event models. The Chi language and simulator have proved themselves in many industrial projects
involving discrete-event modelling and simulation. For continuous-time and hybrid systems, the current simulator
provides time-event and state-event handling, root location, initial state calculation, handling of discrete-event sub-
phases, and index 1 DAE solving. For real-time control, Chi models can be compiled to run on real-time operating
systems such as VxWorks.
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1 Introduction

Production systems can be divided into two types:
discrete production systems, and production systems of
the so-called process type. Discrete production systems
can be characterized by the fact that discrete products
need to be positioned, e.g. in assembly lines. In
production systems of the process type on the other
hand, there is no positioning of intermediate products.
This is especially clear when materials are in gaseous,
liquid, or powder form. For ‘process-type production’
the distinction can be made between batch production
and continuous production. In batch processes, several
process steps are executed in one place, usually a tank,
such as a batch reactor. In the reactor, operating condi-
tions vary as a function of time. After execution of
the process steps, the materials are transported. In
continuous processes on the other hand, there is a
continuous flow of materials and operating conditions
are meant to vary only as a function of place in the
production process, not as a function of time [32].

Production systems, especially discrete and batch
production systems, are often far too complex for
detailed mathematical analysis, because of the large
size, stochastic behaviour, parallelism, shared resources,
timing and other constraints, interactions between
subsystems, and different possible routings for the
products. Therefore, simulation is used for analysis and
improvement of the time-dependent behaviour of these
systems. Currently, different languages are required for
simulation of discrete, batch, and continuous production

systems, respectively. Large industrial plants consist
of systems from many different domains: electrical,
mechanical, pneumatical, chemical systems; local
and global (supervisory) control systems. For each
of these systems, different application-specific simu-
lation languages are available. In some cases, simu-
lation models of control systems can be automatically
converted to real-time control systems. In many other
cases, such as control systems based on scheduling rules,
simulation models cannot be reused for the development
of real-time control systems. As a result, many different
languages may be required for the design and operation
of large industrial systems. The application of each
language is limited to the design and analysis of some
subsystem. An optimal design of several subsystems
will not, however, necessarily lead to an optimal design
of the total system.

2 Integration of model components

Several paths are being followed to enable communi-
cation between models of components from different
domains. The Defense Modelling and Simulation Office
of the USA leads an effort to establish a common
technical framework to facilitate the interoperability
of all types of models and simulations. This High
Level Architecture (HLA [11]) has been accepted as
a draft IEEE standard (IEEE 1516). Emphasis is
on discrete-event models and simulations. A project
which emphasizes continuous-time models and simula-
tions, with or without discontinuities, is Global CAPE-
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OPEN [8]. Its objective is to stimulate the devel-
opment of open standard interfaces for component-
based process simulation and computer-aided process
engineering. The “Open Toolset for Mixed Simu-
lation of Multi-domain Systems” (TOOLSYS) project
attempts to use VHDL-AMS [18] as a means to integrate
multi-domain system models [2]. Finally, for the design
of embedded systems, several multi-language simu-
lation environments exist. Two of these are Ptolomy
[17] and ClearSim-MultiDomain [34].

The χ (or Chi) project also aims at inte-
gration of model components. However, it does
this in a way complementary to the HLA, Global
CAPE-OPEN, TOOLSYS, Ptolomy and ClearSim-
MultiDomain approaches. The aim is to provide
one language suited to modelling, simulation, control,
and verification of pure discrete-event systems, pure
continuous-time systems and combined discrete-event
/ continuous-time systems. The application field is
intended to be very wide: ranging from chemical
or mechanical physical systems [38] to complete
production systems such as a fruit-juice production plant
[16], or an integrated circuit manufacturing plant [33].
Control systems can be integrated with the model parts
that describe the physical behaviour and can range from
control systems of individual machines [36] to control
systems based on complex scheduling rules [26]. One of
the goals is to be able to reuse the control algorithms of
the simulation models for actual real-time control [41],
which requires, among others, a high-level exception
handling mechanism [37].

Another multi-domain modelling and simulation
language is Modelica [27]. A difference with theχ
language is that Modelica is directed more towards
the continuous-time domain, and incorporates many
different equation solvers. Discrete actions in Modelica
are modelled in an equation-like manner. Higher level
discrete components are made available by means of
component libraries, such as a Place and Transition
library [28] for Petri net modelling.

Although the intended application field ofχ is very
wide, there are still many application areas for which
special purpose environments are preferable. Modelling
and simulation of integrated circuits is an example of an
application area that is best dealt with using a language
such as VHDL-AMS [18], that has been developed espe-
cially for this purpose.

3 Design of the χ language

This section extends the treatment of theχ syntax and
semantics in [38] by including design considerations,
background information, and major recent changes.

3.1 Requirements

The most essential requirements for the design of theχ

language are:

• Multi-domain modelling should be supported.
Although there are many quite different specialized
modelling languages, the required language
constructs for modelling of physical systems are
relatively independent of the application domain.
A goal of theχ project is to find a minimal set
of language elements suited to modelling of a wide
variety of systems. In some domains, a continuous-
time model is best suited. In other domains, a
pure discrete-event model, or a hybrid model is
best suited.

• All models should be executable by means ofsimu-
lation, see Section 4.

• Model verification should be supported, see
Section 5.

• A ‘direct’ transition from simulation toreal-time
control should be possible, see Section 6.

• The language should consist of asmallnumber of
orthogonal(not overlapping and free to combine)
basic language elements.

• The language should be sufficientlyexpressiveto
support the modeller in the development of models
of complex systems in a limited amount of time.
Expressive power is required both for behaviour
modelling and for data modelling. In order to
provide sufficient expressive power, the language
should supportmodular composition.

• The language should be readable and usable by a
wide range of users, not just by expert computer
scientists.

3.2 Background

The continuous-time part ofχ is based on DAEs (differ-
ential algebraic equations). The discrete-event part is
based on a combination of communicating sequential
processes (CSP) with Dijkstra’s guarded commands
[12], such as described in [21]. However, for commu-
nication, the channel concept from [22] is used. Theχ

language differs considerably from other CSP variants.
The reason for this is that most CSP variants are based
on Hoare’s CSP version of 1985 [22]. This includes
the CSP variants described in [20], and the hybrid
CSP versions [24, 10]. The main purpose of these
CSP variants is formal analysis. Processes are spec-
ified in a functional way, using recursion, while support
for data modelling is minimal. Specification ofχ
processes on the other hand, is done in an imper-
ative way, using a sequence of statements, including
assignments, conditional statements, and repetition; and
advanced data modelling constructs are available. In
this way, theχ language is readable and usable (after
getting acquainted with the basic principles) by a wide
range of industrial users, while at the same time a formal
semantics is available [7]. The Ptolomy project [17]
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also includes a basic CSP-based language [35]. The
difference withχ is that, where the Ptolomy project
aims at obtaining high expressivity by integrating several
different languages into one modelling environment, the
χ project aims at obtaining a highly expressive language
by integration of a carefully selected small number of
orthogonal language elements. This orthogonal inte-
gration of language elements is especially evident in the
highly expressive selective waiting statement, explained
in Section 3.6.

3.3 Modular composition

Modular composition is provided by means of processes
and systems that interact by means of channels and
shared variables. The basic building block of aχ model
is a process, which may consist of a continuous-time part
only, a discrete-event part only, or a combination of both.
A system consists of a number of process (or system)
instantiations, and channels and/or shared variables
connecting these processes. The fact that the model
of a system may contain instantiations of other systems,
makes it possible to model systems in a hierarchical way.
Interaction between continuous-time parts of processes,
consisting of (differential algebraic) equations, takes
place by means of shared variables. Interaction between
the discrete-event part of a process and the continuous-
time part of the same, or another process, also takes
place by means of shared variables: in the discrete-
event part of a process, assignments can be made to
variables that occur in the equations of the continuous-
time part; and by means of the state-event statement∇ b

(see Section 3.6), the discrete-event part of a process can
synchronize with the continuous part of a process. Inter-
action between discrete-event parts of processes typi-
cally takes place by means of (synchronous commu-
nication) channels. In some cases, however, inter-
action is more conveniently specified using a discrete
shared variable (such as a boolean variable representing
a sensor), and a state-event statement∇ b involving the
shared variable. A model of a conveyor system based
on modular composition according to the most recentχ

syntax and semantics is presented in [39].
Continuous channels are no longer used inχ . The

main reason for this is that shared variables are a more
straightforward mechanism than continuous channels.
Shared variables lead to systems that have less variables,
and that are easier to understand. For instance, consider
a control system and a physical system interacting by
means of a sensor and an actuator. Using shared vari-
ables, a sensor can be represented by one shared variable,
that is referred to both in the physical system and in the
control system. Using continuous channels, the control
system and the physical system each have their own local
sensor variable. By connecting these two sensor vari-
ables by means of a continuous channel, an equality
is introduced between the two sensor variables. The
difference between the two modelling techniques is clar-
ified by comparing theχ specification of a conveyor

system using continuous channels in [36], with theχ

specification of a similar conveyor system using shared
variables in [39].

Channels are used for synchronization and commu-
nication between processes. They are essential in
two ways: to model communication and synchro-
nization between control systems, and to model material
transport between physical processes. The transported
material can be conveniently modelled as a data object
in χ . Such a data object could, for example, include
information on the production steps (recipe) that the
material needs to undergo. Transportation of the
material requires the sending and receiving processes to
be ready at the same time. Therefore, the synchronous
communication channels inχ are very well suited to the
modelling of material transport.

3.4 Data modelling

Besides the basic data types such as bool (boolean),
int (integer), real, and string, structured data types are
available in the form of array, set, list and tuple types.
Tuples are comparable to records. In order to provide the
modeller with sufficient expressive power, many oper-
ations on these data types are available. Examples are
the built-in language elements for operations on sets and
lists, such as set/list comprehension [5] that derive a
subset/sublist of a set/list for which all elements satisfy
a specified condition. Besides this, functions may be
defined at the outer level of the model. Such user
defined functions can be used in expressions both in the
continuous-time and discrete-event parts ofχ models.
All variables are declared as either continuous using a
double colon (e.g.V :: real), or discrete using a single
colon (e.g. n : int). The continuous variables are the
unknowns in the equations, whereas the discrete vari-
ables are known in the equations. Therefore, the value
of a discrete variable is determined by assignments only.

3.5 Discussion of the continuous-time part ofχ

The continuous-time part is clearly separated from the
discrete-event part. In this way, pure continuous-
time processes can be specified using only equa-
tions, shared variables, and processes and systems as
required language elements. A time derivative is indi-
cated by a prime character (e.g.x′). DAEs (Differ-
ential Algebraic Equations) are separated by commas:
DAE1, DAE2, . . . , DAEn. A DAE can be a normal
equation or aguarded equation ([GE]), also referred to
as a conditional equation. The latter is used when the set
of active equations depends on the state of the system.
The syntax is[ b1 −→ DAEs1 [] . . . [] bn −→ DAEsn ],
where DAEsi (1 ≤ i ≤ n) represents one or more
DAEs. The boolean expressionbi represents aguard.
At any time, at least one of the guards must be open
(true), so that the equationsDAEsi associated with an
open guard can be selected to become part of the set
of active equations. The normal, non-guarded equa-
tions are always part of the active equations. When all
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discrete processes are blocked, the active equations are
solved. For this purpose, the number of active equations
must be equal to the number of continuous variables. A
summary of the continuous-time language constructs in
Backus-Naur Form (BNF) is given in Table 1, wherer

is an expression of type real.

Table 1: BNF syntax of the continuous-time part ofχ .

DAE ::= r = r | [GE] | DAE, DAE
GE ::= b −→ DAE | GE [] GE

3.6 Discussion of the discrete-event part ofχ

A summary of the discrete-event language constructs
[40] is given in Table 2. Besides these elementary
language constructs, there are also a number of language
constructs that can be considered as ‘syntactic sugar’
(e.g. c ! and c ?). The meaning of these language
elements can be expressed in terms of the elementary
language elements.

Table 2: BNF syntax of the discrete-event part ofχ .

E ::= c ! e | c ?x | 1 r | ∇b

GB ::= b −→ S | GB [] GB
GW ::= b; E −→ S | GW [] GW
G ::= [GB] | [GW]
S ::= x := e | E | G | ∗G | S ; S

Event statements, denoted by non-terminalE, are
statements in which time may pass. There are three
types of event statements:communication statements
(c ! e, c ?x), time passing statements (1 t), andstate-
event statements (∇ b).

Synchronouscommunication is specified by a send
statementc ! e and a receive statementc ?x, wherec is a
channel connecting two processes. Execution ofc ! e or
c ?x in one process causes the process to be blocked until
c ?x orc ! e is executed in the other process, respectively.
Subsequently the value of expressione is assigned to
variablex. As syntactic sugar, the language provides
two shorter notations for the case that no data needs to be
exchanged between processes (pure synchronization).
The send and receive statementsc !, c ? may be used, or
both processes may usec ∼. The semantics is analogous
to c ! e andc ? x, but without data exchange.

Time passing is specified by delay statement1 r,
where r is an expression of type real. A process
executing this statement is blocked until the time is
increased byr time-units.

State-events are specified by means of thestate-event
statement∇ b, whereb is a boolean expression. A
process executing∇ b is blocked until expressionb
becomes true. There are two syntactically different
forms of statement∇ b. If at least one continuous
variable is used inb, the syntax ofb must be of the
form r1 rop r2, wherer1 andr2 are expressions of type
real, androp is a relational operator (≤, <, >, ≥). An

example is∇ V > 5, whereV can be a continuous
variable representing the volume of a tank. By means
of this form, the discrete-event part of a process can
synchronize with the continuous-time part of a process.
The reason for the restricted formr1 ropr2 is that general
purpose numerical solvers, such as DASSL [31], cannot
directly detect the fact that an expression becomes true.
They can only detect that a user supplied “root func-
tion” crosses zero. The restriction of the formr1 rop
r2 makes it possible to user1 − r2 as a root function.
When it crosses zero, the state-event is assumed to have
taken place, and the solver stops solving. State-event
statement∇ r1 ≥ r2 is given to the solver as root function
r1 − r2. State-event statement∇ r1 > r2 is given to
the solver as∇ r1 ≥ r2 + ε (under the condition that
r1 ≤ r2, otherwise the statement∇ r1 > r2 terminates
immediately), so as root functionr1 − r2 − ε, whereε is
a very small positive value. If no continuous variables
are used in expressionb (in ∇ b), there are no addi-
tional restrictions on the form of the expression. This
case is especially useful for interaction with sensors that
are modelled by means of a boolean variable; e.g.∇ s,
wheres is a boolean variable representing the state of a
sensor [39].

Selection ([GB]) is specified by[ b1 −→ S1 [] . . . []
bn −→ Sn ]. The boolean expressionbi (1 ≤ i ≤
n) represents aguard, which is open ifbi evaluates as
true and is closed otherwise. At least one of the guards
must be open. After evaluation of the guards, one of
the statementsSi associated with an open guardbi is
executed.

Selective waiting ([GW]) is specified by[ b1; E1 −→
S1 [] . . . [] bn; En −→ Sn ]. An event statementEi

which is prefixed by a guardbi (bi; Ei) is enabled if the
guard is open and the event specified inEi can actually
take place. Guards are evaluated only once, directly
when the selective waiting statement is executed. The
time-event specified by1 t can take place whent time
units have passed. The process executing[GW] remains
blocked until at least one event statement is enabled.
Then, one of these (Ei) is non-deterministically chosen
for execution, followed by execution of the corre-
spondingSi . The selective waiting statement is the most
flexible and powerful statement of theχ language. It can
be used to model simultaneous waiting for an arbitrary
number of different events: either a synchronization
event (c ? orc !), a communication event (c ?x or c ! e),
a state-event (∇ r), or a time-event (1 t). The statement
is a good example of the orthogonal design of theχ

language. The additional boolean guards of the selective
waiting statement further increase its expressivity, so
that it can also be used to model a hybrid automaton [1].
Below, an example of aχ model of a hybrid automaton
with two states is given, wheres is a variable describing
the state. The| symbol separates the continuous and the
discrete parts of the specification. The continuous part
consists of a guarded equation; the discrete part consists
of a repetitive selective waiting statement:
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| [ s = 0 −→ f0(x
′, x) = 0

[] s = 1 −→ f1(x
′, x) = 0

]
| ∗[ s = 0; ∇ b01 −→ s := 1; x := k1

[] s = 0; 1 2 −→ s := 1; x := k1
[] s = 1; ∇ b10 −→ s := 0; x := k0
[] s = 1; c ?y −→ s := 0; x := k0
]

State 0 (s = 0) of the automaton is associated with
equationf0(x

′, x) = 0, and state 1 (s = 1) with
equationf1(x

′, x) = 0. A transition from state 0 to
1 occurs when boolean expressionb01 becomes true, or
after a time-out of 2 time-units. In both cases,x is set
to k1. A transition from state 1 to state 0 occurs when
boolean expressionb10 becomes true, or when a receive
action on channelc occurs. In both cases,x is set tok0.
Although a receive action is not a primitive operation of
a hybrid automaton, the action is included in the example
to show the versatility of the selective waiting statement.

Repetition of statement[GB] or [GW] is specified by
∗[GB] or ∗[GW], respectively. In this case, it is not
necessary for at least one of the guards to be open. If all
guards are closed, the repetition terminates.

The discrete-event part of a process consists of a
statementS. Such a statement can be an assignment
statementx := e, an event statementE, a guarded
commandG, a repetition∗G, or a sequential compo-
sition of statementsS; S (see Table 2).

4 Simulation

Information on the history of theχ simulator and on the
way to use the simulator can be found in [38, 13, 3],
where [38] also positions theχ language with respect to
other hybrid simulation languages. Currently, the simu-
lator features simulation of ODEs and DAEs of index
1, handling of time-events, detection of state-events,
and iterative root location [29]. Two solvers are used:
DASSL and NLEQ. DASSL [31] is used to solve the
equations as a function of time. Discontinuities in the
discrete-event phase may cause the set of equations to
become inconsistent. The NLEQ solver [30] calculates
a new consistent state when all discrete processes are
blocked. This new state may trigger additional state-
events that cause a new discrete-event sub-phase to be
started [14], thus prolonging the current discrete-event
phase. The simulator has been successfully applied to
a large number of industrial cases, some of which have
been mentioned in Section 2. For these cases, the high-
level data and behaviour modelling constructs of theχ

language, that are all executable by means of simulation,
are essential.

Currently, the number of continuous variables and
the number of equations must remain constant during
a simulation run, and a differential variable (a variable
occurring with a prime in the equations) cannot
change dynamically into an algebraic variable (variable
that does not occur with a prime in the equations).

Future improvements will be directed towards enabling
dynamical changes in the number and type of continuous
variables, and towards speeding up simulation of models
with equations, by means of block lower triangular parti-
tioning (BLT) and tearing [9].

Libraries of components are currently not supported
in χ . An experimental version of libraries for the
discrete-eventχ simulator was later removed, since it
appeared that there was little overlap between compo-
nents of accurate discrete-event models of large indus-
trial production systems. For hybridχ , much work will
need to be done on the syntax and semantics of the
language, and on the implementation of the simulator
before libraries are reconsidered.

Theχ simulator is available for the Linux and MS-
Windows platform. However, since the implementation
is based on the 1998 ISO/ANSI-C++ standard, it should
be able to run on any platform that conforms to that
standard. The simulator is currently being redesigned,
so that the different parts of the simulator (compiler,
kernel, discrete part, continuous part) are clearly sepa-
rated from one another, and interact by means of well-
defined interfaces. It is also redesigned to conform to the
new syntax and semantics. It is expected to be available
in the beginning of 2001.

5 Verification

A joint Ph.D. project has been set up between the
Systems Engineering Group [19] of the Mechanical
Engineering Department and the Formal Methods Group
of the Computing Science Department of the Eind-
hoven University of Technology. The project focuses on
formal analysis of discrete-eventχ models only. Results
of this project so far are described in [25] and [7]. The
complete operational semantics of the discrete-event
part ofχ is described in [6]. As a result of insights gained
from this project, the language syntax and semantics has
been improved in several aspects. The most important
of these changes are listed below.

• The semantics of the delay statement (1 t) has been
changed. The effect of the change is best illus-
trated by the semantics of1 0, a zero delay. The
semantics of1 0 occurring in a sequential compo-
sition of statements (e.g.c ?x ; 1 0; d ! x + 1) is
equivalent to a “skip” statement (a no-operation).
Originally, the semantics of a1 0 as part of a
selective waiting statement (e.g.[ c ?x −→ · · · []
d ! 1 −→ · · · [] 1 0 −→ ... ]) was as follows:
if one of the communications (c ?x, d ! 1) was
possible, it would be executed. The delta zero
would be executed only if none of the communi-
cations were possible at the current time point. In
the new semantics, the choice between1 0 and
communication statements that can be executed
(c ?x or d ! 1) is non-deterministic.

• The “longest waiting communication first” priority
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rule has been removed from the language. In
the original semantics, if in a selective waiting
statement (e.g.[ c ?x −→ · · · [] d ! 1 −→ · · · ]),
two (or more) communications were possible at
the same time (c ?x andd ! 1), that communication
was selected for which the communicating partner
process was waiting longest. In the new semantics,
if several communications are possible, one of
them is selected non-deterministically. Any kind
of priority between different communications must
now be modelled explicitly.

• Syntactical differences between assignments to
discrete variables, continuous differential vari-
ables, and continuous algebraic variables (initial
guesses) have been removed. There is now only
one assignment operator (:=). The reason for this
is that there is no semantic difference between these
assignments.

The effect of the changes in the semantics of the
selective waiting statement, is that the choice between
enabled event statements in a selective waiting statement
is now non-deterministic. In this way, the operational
semantics has been simplified considerably, which was
necessary for the purpose of verification.

A similar joint Ph.D. project will be started for hybrid
χ . The aim of the project is to integrate the knowledge
and demands from: 1) the field of modelling and simu-
lation of hybrid systems, and 2) the field of verification
of hybrid systems.

6 Real-time control

Real-time control usingχ is treated in [23]. The
(discrete-event)χ model of a control system can be
tested by means of simulation, and it can be analyzed
by means of formal verification. A case study using
χ for real-time control of a scaled-down mock-up of
a paint factory is presented in [41]. This case study
is based on a discrete-event version ofχ , so without
continuous variables and equations. The paint factory
is controlled by means of binary actuators and sensors
(mostly binary). For the purpose of simulation-based
testing of the control system, the control system and the
controlled system are both modelled inχ . Processes
in this model interact only by means of channels via
synchronous communication. Part of the structure of
this model is informally shown in Figure 1.

The binary sensors are modelled by means of the
χ processesS. These sensor processes interact with
the χ control processesC1 andC2 by means of three
channels each, that are referred to ason, off , andvalue.
When the status of the modelled sensor is ‘on’, the
sensor process is prepared to synchronize via channel
on; when the sensor is ‘off’, its process is prepared
to synchronize via channeloff ; and for both states of
the sensor, the sensor process is prepared to commu-
nicate the current status (on or off) via channelvalue.

C1 C2

P1 P2

SS
a2a1

Figure 1: Part of the paintfactory model.

The control processesC1 andC2 can synchronize via
channelson and off in order to wait until the sensor
is on or off, respectively. The current status of the
sensor can be received by means of communication via
channelvalue. The status of a sensor model is deter-
mined by the processesP1 andP2, that model a part
of the paint factory. If a sensor needs to change its
status, it receives a message via a channel from process
P1 or P2. Activation of the actuators is modelled by
means of sending a boolean via channela1or a2. In this
way, the only means of interaction between the control
system processes and the processes that model the paint
factory is by means of channels. Of course, the control
system processes also interact between themselves by
means of channels. When the combined model of the
control system and the paint factory model has been
tested sufficiently by means of simulation, the model
of the paint factory and the sensors and actuators are
replaced by the real physical system. For this purpose,
theχ specification of the control processes needs to be
changed in one respect only: all communication oper-
ations on the channels for interaction with the sensors
and actuators need to be replaced by IO-operations that
directly access the hardware sensors and actuators. For
example, synchronizations with the channelsonandoff
are replaced by calls to waitBit(); and a receive action on
channelvalueis replaced by a call to readBit(). Future
research will deal with simplification or automation of
this conversion, and will also consider hybrid models of
the controlled system, such as discussed in [36, 39].

The resulting χ control system specification is
compiled by a special version of theχ compiler that
generates C++ code. This code is linked to a real-
time χ kernel and to other libraries and drivers. The
resulting code can be downloaded to the real-time oper-
ating system VxWorks [42] for real-time control. This
transition from aχ control system specification to a real-
time executable was done in accordance with the POSIX
series of standards, where POSIX is an acronym loosely
defined as a portable operating system interface based
on UNIX. It refers to a collection of international stan-
dards for UNIX-style operating system interfaces, and
is specified by several IEEE 1003.xx standards.
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7 Comparisons

Representative cases can be useful to get an impression
of the possibilities of a language and simulator. The
official membership journal “Simulation News Europe”
(SNE) of EUROSIM and SCS Europe has published
12 comparison benchmarks [4], ranging from pure
continuous-time cases to hybrid and discrete-event
cases; e.g. comparisons entitled ‘Lithium-Cluster
Dynamics under Electron Bombardment’, ‘Constrained
Pendulum’, ‘Fuzzy Control of a Two Tank System’,
‘SCARA Robot’, and ‘Flexible Assembly System’.
Results from different simulation languages are catego-
rized and published by ARGESIM, both on the Internet
and in Simulation News Europe. In [15] the tasks
described in comparisons 1, 3, 5, 7, 9, 11, 12 and CP1
have been modelled and simulated usingχ . Comparison
3, and the third task from comparison CP1 could not be
solved with the current version of theχ simulator. All
other comparison tasks were completely solved. The
comparisons were all of a continuous-time or hybrid
nature. The discrete-event comparisons 6 and 8 are
currently being tackled. The remaining discrete-event
comparisons 2 and 4 will be tackled in future.

8 Conclusions

The application domain of theχ language is very wide.
Models may range from pure continuous-time models
to pure discrete-event models, and any combination of
the two. Due to the orthogonal design of the language
and careful selection of the language primitives, the
core of the language is small. At the same time,
the high-level data modelling constructs and high-level
behaviour modelling constructs provide the modeller
with expressive power. The language and simulator have
been successfully applied in many industrial projects.
The discrete-eventχ verification project has resulted
in considerable improvements to the language. In
future, verification will also aim at hybridχ models.
For simulation of continuous-time and hybrid models,
the χ simulator provides time-event and state-event
handling, root location, initial state calculation, handling
of discrete-event sub phases, and index 1 DAE solving.
For the purpose of real-time control,χ models can be
compiled to executables that run under real-time oper-
ating systems such as VxWorks.
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