
In Les Systèmes Dynamiques Hybrides / Hybrid Dynamical Systems—Proc. of 3rd
International Conference on Automation of Mixed Processes, Reims, 1998, pp. 415-420.

SPECIFICATION OF DISCONTINUITIES IN HYBRID MODELS

SPECIFICATION DES DISCONTINUITES DANS LES MODELES
HYBRIDES

D.A. VAN BEEK*, J.E. ROODA**

Eindhoven University of Technology, Dept. Mech. Eng.
POB 513, 5600 MB Eindhoven, The Netherlands

* Tel: +31-(0)40-2472892, E-mail: vanbeek@wtb.tue.nl
URL: http://asterix.urc.tue.nl/~vanbeek

** Tel: +31-(0)40-2474553, E-mail: rooda@wtb.tue.nl

Abstract: Two types of discontinuities are distinguished:D andD′ discontinuities. The facilities
for discontinuity specification in the combined continuous-time / discrete-eventχ language
are treated. Although the language consists of a relatively small number of language elements,
discontinuities can be elegantly specified in many ways. This is illustrated by means of examples.
D discontinuities cannot be handled by the differential algebraic equation solver used in theχ

simulator. By means of techniques such as substitution, variables that cause the discontinuity
can be removed.

Résumé: Deux types de discontinuités se distinguent: les discontinuitésD et les discontinu-
itésD′. Les mécanismes mis en place par le langage hybrideχ pour spécifier les discontinuités
sont présentés. Bien que ce langage comporte un nombre limité de primitives, il fournit des
mécanismes élégants et variés pour la spécification des discontinuités. Le ‘résolveur’ d’équa-
tions différentielles algébriques employé dans le simulateur n’est pas capable de traiter les
discontinuitésD. Des techniques telle que la substitution peuvent être employées pour éliminer
les variables engendrant ces discontinuités.

1. INTRODUCTION

An important aspect of modelling hybrid systems is the
specification of discontinuities. Physical systems nor-
mally do not exhibit discontinuous behaviour. Models
of such systems are abstractions. Detail is omitted in
order to reduce the complexity of the models. In this
way, discontinuities can be introduced into the mod-
els. Many languages that have facilities for specifica-
tion of discontinuities are continuous-time languages to
which constructs for discontinuity specification have
been added. Two examples are ACSL [MG 76] and
Dymola [Elm 94]. Theχ language is based on a dif-
ferent design philosophy. It consists of two parts: a
part for specification of continuous-time systems, and a
part for specification of discrete-event systems. By us-
ing combinations of the discrete-event and continuous-
time language constructs, different types of discontinu-
ities can be easily specified. This paper defines different
types of discontinuities and treats the facilities for dis-
continuity specification of theχ language. The paper
also gives insight into how discontinuities affect the
operation of a simulator, and treats how discontinuities
can be successfully handled.

2. DEFINITION OF DISCONTINUITIES

First, the definition of a discontinuous function is given.
We write limx↑xd f (x) asf (x−d), and limx↓xd f (x) as
f (x+d). A functionf (x) is discontinuous if a valuexd

exists for whichf (x−d) andf (x+d) exist, andf (x−d) 6=
f (x+d). In [CEOT 93], such a functionf (x) is referred
to as aD-function, whereas a continuous functiong(x)

with a discontinuous derivativeh(x)= ∂g(x)
∂x

is referred
to as aDD-function. In this paper, we use the termD′
function instead ofDD-function. In a similar way,D′′
functions (and so on) could be defined, but they are of
little practical importance. Second, two kinds of vari-
ables are distinguished: continuous and discrete vari-
ables. The value of a continuous variable is determined
mainly by equations, whereas the value of a discrete
variable is determined by assignments.

The value of a variable can be represented by a func-
tion defined on time. Consider a continuous variable
c, the value of which is represented by functionc(t)

(wheret represents time). Variablec is D-continuous
orD′-continuous ifc(t) is aD function orD′ function,
respectively. The functiond(t) that represents the value

of a discrete variabled is always aD function (unless
it is constant), because discrete variables change at dis-
crete points of time only.

Discontinuities are relevant for models with continuous
variables. Such a model has aD or D′ discontinuity if
a time pointtd and a (D- or D′-) continuous variable
c exist for whichc(t−d) 6= c(t+d) or c′(t−d) 6= c′(t+d),
respectively. The discontinuity occurs att = td when
c(t) changes fromc(t−d) toc(t+d), orc′(t) changes from

c′(t−d) to c′(t+d). A model is also said to have aD(′)

discontinuity if it has a continuous variable that can be
represented as aD(′) function of another continuous
variable (see Section 4.2).

3. INTRODUCTION TO THEχ LANGUAGE

3.1 Design

Theχ language has only one language construct that
has been designed especially for discontinuity han-
dling: guarded equations, which are treated in the next
section. All other language elements are general pur-
pose constructs that are required for continuous-time
and discrete-event systems specification. The language
has been designed from the start as a hybrid language
that can be used for modelling, simulation and con-
trol of discrete-event systems, continuous-time sys-
tems and combined discrete-event / continuous-time
systems.

A small number of flexible, orthogonal (elements can
be freely combined and have no overlap) discrete-event
and continuous-timeχ language constructs allow dif-
ferent types of discontinuities to be specified in an
elegant way. Interaction between the continuous-time
and discrete-event part plays a central role in discon-
tinuity specification. This is a different approach than
the one taken in the gPROMS language for example,
where the continuous-time part has been designed for
physical systems specification, and the discrete-event
part for operating procedure modelling. As a result, the
continuous-time part of gPROMS has two language
elements for physicochemical discontinuity specifica-
tion: one for specification of ‘reversible’ discontinu-
ities, and one for specification of ‘irreversible’ and
‘asymmetric and reversible’ discontinuities [BP 94].

3.2 Syntax and semantics

In this paper, a small subset of the language is treated.
We do not treat the language elements for modelling
parallel processes that interact by means of mes-
sage passing and synchronization. For these and other
aspects of theχ language, we refer the reader to
[BRG 96,BGR 97].

A process may consist of a continuous-time part only
(DAEs: differential algebraic equations), a discrete-
event part only, or a combination of both.

proc name(parameter declarations) =
|[variable declarations; initialization
| DAEs | discrete-event statements
]|

All data types and variables are declared as either con-
tinuous or discrete. The value of a discrete variable is
determined by assignments (e.g.n := 0). Between two
subsequent assignments, the variable retains its value.
The value of a continuous variable, on the other hand,
is determined by equations. An assignment to a con-
tinuous variable (e.g.v ::= 0) determines its value for
the current point of time only. Some discrete data types
are predefined such as bool (boolean), int (integer) and
real. Since all continuous variables are assumed to be
of type real, they are defined by specifying their units
only. For example, the declarationv : [m/s] defines a
continuous variablev.

Differential algebraic equations are separated by com-
mas:DAE1,DAE2, . . . ,DAEn. A DAE can be a normal
equation or aguarded equation. The latter is used when
the set of equations depends on the state of the system.
The syntax is[b1 −→ DAEs1 [] . . . [] bn −→ DAEsn].
DAEsi (1≤ i ≤ n) represents one or more DAEs. The
boolean expressionbi denotes aguard. At any time,
at least one of the guards must be open (true), so that
the DAEsDAEsi associated with an open guard can be
selected.

The discrete-event part ofχ is a CSP-like real-time
concurrent programming language for which we refer
to [MFRN 95].Time passing is denoted by1t , where
t is an expression of type real. A process executing
this statement is blocked until the time is increased by
t time-units.Repetition of statementS is denoted by
∗[S].
The χ selection statement is a guarded command
[b1 −→ S1 [] . . . [] bn −→ Sn]. The boolean expres-
sionbi (1≤ i ≤ n) denotes aguard, which is open ifbi

evaluates to true and is otherwise closed. After evalua-
tion of the guards, one of the statementsSi associated
with an open guardbi is executed.

By means of thestate event statement∇ r , the discrete-
event part of a process can synchronize with the
continuous-time part of a process. Execution of∇ r ,
wherer is a relation involving at least one continu-
ous variable, causes the process to be blocked until the
relation becomes true.

4. DISCONTINUITY SPECIFICATION INχ

Discontinuities can be specified inχ by means of:

(1) Assignments to discrete variables occurring in
equations

(2) Guarded equations using continuous variables in
the guards

(3) Functions

2

(4) Assignments to differential variables.

4.1 Assignments to discrete variables occurring in
equations

A simple tank level control system is used as an exam-
ple. The level of the liquid in the vessel is kept close
to the set point by switching the valve on and off. Liq-
uid flows out of the tank due to gravity. By means of
statements in the discrete-event part, hysteresis can be
modelled (see processTCD1).

LC

Qi

h

Qo

Fig. 1. The tank level control system.

D′ discontinuities

The specification of the tank level processTCD1 fol-
lows below (ρ andg are constants). The discrete vari-
ablen gets the values 1 and 0 in the discrete-event part.
As a result of this, the equationAh′ = nQset− Qo
changes fromAh′ =Qset−Qo toAh′ = −Qo. There-
fore, variableh is D′-continuous. This way of specify-
ing discontinuities leads to short and clear models. In
the specification below, the incoming flow is switched
on whenh < hset− hhys and off whenh > hset. The
hysteresis thus equalshhys.

proc TCD1(A, h0, hset, hhys, k, Qset : real) =
|[h : [m], Qo : [m3/s], n : int
; h ::= h0 ; n := 0
| Ah′ = nQset−Qo

, Qo = k
√

ρgh

| ∗[∇ h < hset− hhys; n := 1
; ∇ h > hset; n := 0
]

]|
Since the only values used for variablen are 1 and 0, a
boolean variable can also be used. Such a boolean vari-
able requires the use of a guarded equation as shown
below. The boolean variableb is true when the valve is
open and false when it is closed. This way of specifying
discontinuities is more flexible, because several equa-
tions can be specified after the arrows of the guarded
equation (e.g. see processTOV in Section 4.2).

proc TCD2(A, h0, hset, hhys, k, Qset : real) =
|[h : [m], Qo : [m3/s], b : bool
; h ::= h0 ; b := false

| [b −→ Ah′ = Qset−Qo
[] ¬b −→ Ah′ = −Qo
]

, Qo = k
√

ρgh

| ∗[∇ h < hset− hhys; b := true
; ∇ h > hset; b := false
]

]|

D discontinuities

D discontinuities can be introduced in the specifica-
tions by introducing a continuous variableQi for the in-
coming flow. This gives three continuous variables (h :
[m], Qi,Qo : [m3/s]).The equationAh′ = nQset−Qo
of processTCD1 is then replaced by two equations:

Ah′ = Qi −Qo
, Qi = nQset

VariableQi is D-continuous, because it changes from
0 toQset whenn changes from 0 to 1.

ProcessTCD2 can be changed in a similar way by in-
troducing the continuous variableQi , and replacing the
guarded equation forAh′ by the following two equa-
tions:

Ah′ = Qi −Qo
, [b −→ Qi = Qset
[] ¬b −→ Qi = 0
]

4.2 Guarded equations using continuous variables in
the guards

In this case, the discontinuity is specified in the
continuous-time part of the language. Discrete-event
statements are not required. The specification of hys-
teresis in this way is, however, not possible.

D′ discontinuities

In this example, the on/off valve used in the previous
section is replaced by a valve that can be adjusted lin-
early between fully open and fully closed. The con-
troller is now a continuous-time controller instead of
a discrete-event controller. The model of the complete
system is specified below. The equation forQo has been
removed by substitution.

proc TCPC(A, h0, hset, k, Kp, Qset : real) =
|[h : [m], Qi : [m3/s], u : [−]
; h ::= h0

| Ah′ = Qi − k
√

ρgh

, u = Kp(hset− h)

, [u < 0 −→ Qi = 0
[] 0 ≤ u ≤ 1−→ Qi = uQset
[] u > 1 −→ Qi = Qset
]
]|

3

The tank is represented byAh′ =Qi − k
√

ρgh, and the
controller byu=Kp(hset−h). The valve is represented
by the guarded equation

[u < 0 −→ Qi = 0
[] 0 ≤ u ≤ 1−→ Qi = uQset
[] u > 1 −→ Qi = Qset
]

In this example, continuous variableQi can be repre-
sented as aD′ function ofu.

D discontinuities

Specification of D discontinuities is explained by
means of a tank, represented in Fig. 2, that flows over
when the levelh of the liquid in the tank is higher than
the maximum levelhmax. Theχ specification follows
below. VariableQx is D-continuous, and it can be rep-
resented as aD function ofh.

Qi

Qo

Qx

Fig. 2. Tank with overflow.

proc TOV(A, h0, hmax, Qi, k : real) =
|[h : [m], Qo, Qx : [m3/s]
; h ::= h0
| [h < hmax∨Qi < Qo −→ Ah′= Qi −Qo

, Qx= 0
[] h ≥ hmax∧Qi ≥ Qo −→ Ah′= 0

, Qx= Qi −Qo
]

, Qo = k
√

ρgh

]|
4.3 Functions

Discontinuities can also be present in explicitly defined
χ functions. Consider for example the valve from pro-
cessTCPCin Section 4.2. This valve can also be mod-
elled by means of a (D′) χ function. The function is
shown below.

func clip(xmin, x, xmax : real)→ real=
|[[x ≤ xmin −→ ↑ xmin
[] xmin ≤ x ≤ xmax−→ ↑ x

[] x ≥ xmax −→ ↑ xmax
]
]|

Statement↑ x means: return the value ofx. Using the
function clip, the equations of processTCPC can be
simplified to

Ah′ = Qi − k
√

ρgh

, u = Kp(hset− h)

, Qi = clip(0, u, 1) ·Qset

The clip function simplifies the process equations. It
models the saturation phenomenon that often occurs in
models. The function needs to be defined only once
and can then be used in different processes.

4.4 Assignments to differential variables

Modelling is specifying a system in an abstract way.
The level of abstraction is determined by the amount
of detail the modeller wants to include in the model.
Consider for example a tank. Filling and emptying of
the tank can be described by means of a differential
equation. If the modeller prefers to specify the filling
of the tank in a more abstract way with less detail,
assignments to differential variables can be used. In
the following specification, a tank is repeatedly filled
and emptied.

proc Tk(Vset, Qsetin, Qsetout : real) =
|[V : [m3], n : int
; V ::= 0; n := 0
| V ′ = −nQsetout
| ∗[V ::= Vset; 1 V/Qsetin
; n := 1; ∇ V = 0; n := 0
]

]|
Filling of the tank is modelled by means of a disconti-
nuity: the volume is instantly increased toVset (V ::=
Vset). Subsequently, time passing of the filling opera-
tion is modelled in the delta statement1V/Qsetin. Re-
versing the order of the two statements is also possible
(1V/Qsetin; V ::= Vset). Emptying of the tank is mod-
elled using the differential equationV ′ = −nQsetout.

4.5 Combinations

A somewhat more complex example, that combines as-
signments to discrete variables occurring in equations
and assignments to differential variables (Sections 4.1
and 4.4), deals with modelling of dry friction as shown
in Fig. 3.

Ff Fd

FN

v

Fig. 3. Dry friction.

A driving forceFd (Fd= sin0.25πτ , whereτ is the cur-
rent time) is applied to a body on a flat surface with fric-
tional forceFf . When the body is moving with positive
velocity v, the frictional force is given byFf = µFN,
whereFN=mg. When the velocity of the body is 0, the
frictional force neutralizes the applied driving force. If
the driving force becomes bigger thanµ0FN, the body
suddenly starts moving according toFd − Ff = mv′,

4

whereFf = µFN (µ < µ0). In processFriction1, de-
fined below, discrete variables represents the state of
the process; it can have the valuesNEG, STOP, andPOS.
These values correspond with negative, zero, and pos-
itive velocities respectively of the body. As a result of
the different equations for the three states, variableFf
is D-continuous.

proc Friction1(ε, µ, µ0, m : real) =
|[Ff , Fd, FN : [N], x : [m], v : [m/s]
, s : {NEG, STOP, POS}
; x ::= −2; v ::= 0; s := STOP

| Fd = sin 0.25πτ , FN = mg

, v′ = (Fd − Ff)/m, x′ = v

, [s = NEG −→ Ff = −µFN
[] s = STOP−→ Ff = Fd
[] s = POS −→ Ff = µFN
]
| ∗[s = STOP; ∇ Fd > µ0FN −→ s := POS

; v ::= ε

[] s = STOP; ∇ Fd < −µ0FN −→ s := NEG

; v ::= −ε

[] s 6= STOP; ∇ v = 0 −→ s := STOP

]
]|

The discrete-event part of processFriction1 consists of
a selective waiting statement ([. . . [] . . . [] . . .], e.g.
see [BGR 97]) that is repeated forever (∗). If boolean
expressions = STOP is true and state event∇ Fd >

µ0FN succeeds, then the state switches toPOS (s :=
POS), causing a different equation to be active in the
continuous-time part. The velocityv is then assigned
a very small valueε in order to prevent the state event
∇ v= 0 from occurring immediately. Now that the state
equalsPOS, boolean expressions 6= STOPis true. This
means that state event∇ v = 0 is awaited. Whenv
becomes equal to 0, the state changes toSTOPagain.

ProcessFriction2, that follows below, is a more de-
tailed model. It models that a small amount of energy
is required to switch from stateSTOP to statePOS or
NEG. For this purpose, a fourth stateTRY is introduced.
If |Fd| becomes bigger thanµ0FN, the state switches
to TRY. In this state, the frictional force equalsµ0FN.
If the driving force causes the velocity of the body to
become bigger thanε (a small user defined value, e.g.
10−5), the state switches toPOS. If, however, the driving
force falls back belowµ0FN, the state switches back
to STOP. Fig. 4 shows the results of a 10 second simu-
lation run for the processFriction1 andFriction2. The
difference between the results of the two processes is
too small to be shown graphically.

proc Friction2(ε, µ, µ0, m : real) =
|[Ff , Fd, FN : [N], x : [m], v : [m/s]
, s : {NEG, STOP, TRY, POS}
; x ::= −2; v ::= 0; s := STOP

| Fd = sin 0.25πτ , FN = mg

, v′ = (Fd − Ff)/m, x′ = v

, [s = NEG −→ Ff = −µFN
[] s = STOP−→ Ff = Fd
[] s = TRY −→ Ff = sign(Fd) · µ0FN
[] s = POS −→ Ff = µFN
]
| ∗[s = STOP; ∇ |Fd| > µ0FN

−→ s := TRY

; [∇ v > ε −→ s := POS

[] ∇ v < ε −→ s := NEG

[] ∇ |Fd| ≤ µ0FN −→ s := STOP; v ::= 0
]

[] s 6= STOP; ∇ v = 0−→ s := STOP

]
]|

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10

F d

F f

x

v

Fig. 4. Friction simulation (µ = 0.1, µ0 =
0.18,m = 1, ε = 10−5, g = 10).

5. DISCONTINUITY HANDLING IN THE χ

SIMULATOR

Simulation of a hybrid model is a repetition of two al-
ternating phases: the ‘discrete-event phase’ which in-
volves execution of statements at the current discrete-
event time point, and the ‘continuous-time phase’
which involves solving of equations while time is ad-
vanced to the next discrete-event time point. At the end
of a discrete-event time point, when no more statements
can be executed, a non linear equation solver is called.
This solver calculates a consistent initial state for the
beginning of the subsequent continuous-time phase.
This entails, among other things, calculation of the val-
ues of the algebraic variables. In the continuous-time
phase, a differential algebraic equation solver (DASSL,
[Pet 83]) calculates the continuous variables as a func-
tion of time until the next discrete-event time point.
Discontinuities can occur either in the discrete-event
phase or in the continuous-time phase.

Discontinuities (D′ andD) that occur in the discrete-
event phase are caused by assignments to discrete or
differential variables (Sections 4.1, and 4.4). In this
case, the non linear equation solver, called at the end
of the discrete-event phase, calculates a new consistent
initial state for the continuous-time phase.

5

A discontinuity in the continuous-time phase is caused
by a guarded equation (e.g.[h < hmax−→ Qx = 0 []
h≥ hmax−→Qx =Qi −Qo]) in which a different set
of equations becomes valid, or by a function (Section
4.3). The discontinuity is a result of guards (h < hmax
andh≥ hmax) changing from true to false or vice versa,
because a continuous variable (h) crosses a predefined
boundary (hmax). D′ discontinuities in the continuous-
time phase (Sections 4.2 and 4.3) can be handled by
the DASSL differential algebraic equation solver. Ap-
proaching a discontinuity, it reduces the step size until
the exact time point of the discontinuity is found. After
the discontinuity, the step size is gradually increased.
More efficient techniques, that use the root finding al-
gorithm of the solver to quickly find the discontinu-
ity, are possible, but these are not treated here.D dis-
continuities in the continuous-time phase (Section 4.2)
cannot be so easily handled. The DASSL solver, like
most other differential equation solvers, cannot handle
D discontinuities. Therefore, theseD discontinuities
must first be removed. How this can be done is treated
in the next section.

5.1 RemovingD discontinuities

D discontinuities can be removed by removing theD-
continuous variable by substitution. Consider, for ex-
ample, processTOV in Section 4.2. VariableQx should
not be given to the DASSL solver. At any time that the
value ofQx is needed, the value of a substitution ex-
pression can be used. For this purpose, equations

[h < hmax∨Qi < Qo −→ Ah′= Qi −Qo
, Qx= 0

[] h ≥ hmax∧Qi ≥ Qo −→ Ah′= 0
, Qx= Qi −Qo

]
are rewritten as

Ah′ = Qi −Qo−Qx
, Qx ← [h < hmax∨Qi < Qo −→ 0

[] h ≥ hmax∧Qi ≥ Qo −→ Qi −Qo
]

The use of a left arrow instead of the equal sign indicates
a substitution equation. The meaning of the substitu-
tion equation forQx is that whenever the value ofQx
is needed, 0 is substituted whenh < hmax∨Qi < Qo,
andQi −Qo is substituted whenh≥ hmax∧Qi ≥Qo.
This means that the only equations that are given to the
DASSL solver areAh′ = Qi − Qo − Qx andQo =
k
√

ρgh, whereh andQo are the two continuous vari-
ables.Qi is a constant parameter, andQx is substituted
by either 0 orQi − Qo, depending on the value ofh
and the value ofQi relative toQo.

Currently, the modeller needs to identify substitution
variables by means of the← symbol. In future, we want
to let theχ simulator determine substitution variables

by means of symbolic analysis and manipulation of the
equations, so that the modeller no longer needs to do
this.

6. CONCLUSIONS

A small number of flexible, orthogonal discrete-event
and continuous-timeχ language constructs allow dif-
ferent types of discontinuities to be specified in an el-
egant way. Discontinuities that occur in the discrete-
event phase are easily handled by calculation of a new
initial state at the end of the discrete-event phase. In
the continuous-time phase, the DASSL differential al-
gebraic equation solver used in theχ simulator handles
D′ discontinuities, but cannot handleD discontinuities.
By means of techniques such as substitution, variables
that cause the discontinuity can be removed.

ACKNOWLEDGEMENT

We thank Georgina Fábián for helpful comments, and
for the idea of substitution of continuous variables.

REFERENCES

[BGR 97] D.A. van Beek, S.H.F. Gordijn, J.E. Rooda.
“Integrating continuous-time and discrete-event
concepts in modelling and simulation of manufac-
turing machines.”Simulation Practice and Theory,
5, 653–669.

[BP 94] P.I. Barton, C.C. Pantelides. “Modeling of
combined discrete/continuous processes.”AIChE,
40(6), 966–979.

[BRG 96] D.A. van Beek, J.E. Rooda, S.H.F. Gordijn.
“Hybrid modelling in discrete-event control sys-
tem design.” In:CESA’96 IMACS Multiconference,
Symposium on Discrete Events and Manufacturing
Systems, pp. 596–601.

[CEOT 93] F.E. Cellier, H. Elmqvist, M. Otter, J.H.
Taylor. “Guidelines for modeling and simulation
of hybrid systems.” In:IFAC 12th Triennial Wordl
Congress, pp. 1219–1225.

[Elm 94] H. Elmqvist. Dymola – Dynamic Modeling
Language – User’s Manual. Dynasim AB, Lund,
Sweden.

[MFRN 95] J.M. van de Mortel-Fronczak, J.E. Rooda,
N.J.M. van den Nieuwelaar. “Specification of
a flexible manufacturing system using concurrent
programming.”Concurrent Engineering: Research
and Applications, 3(3), 187–194.

[MG 76] E.E.L. Mitchell, J.S. Gauthier. “Advanced
continuous simulation language (ACSL).”Simula-
tion, 26(3), 72–78.

[Pet 83] L.R. Petzold. “A description of DASSL: A dif-
ferential/algebraic system solver.”Scientific Com-
puting, pp. 65–68.

6

