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Abstract: Two types of discontinuities are distinguishédandD’ discontinuities. The facilities

for discontinuity specification in the combined continuous-time / discrete-eydahguage

are treated. Although the language consists of a relatively small number of language elements,
discontinuities can be elegantly specified in many ways. Thisisillustrated by means of examples.
D discontinuities cannot be handled by the differential algebraic equation solver usegin the
simulator. By means of techniques such as substitution, variables that cause the discontinuity
can be removed.

Résumé: Deux types de discontinuités se distinguent: les discontiniitésles discontinu-
itésD’. Les mécanismes mis en place par le langage hyhrjatsur spécifier les discontinuités

sont présentés. Bien que ce langage comporte un nombre limité de primitives, il fournit des
mécanismes élégants et variés pour la spécification des discontinuités. Le ‘résolveur’ d'équa-
tions différentielles algébriques employé dans le simulateur n’est pas capable de traiter les
discontinuitésD. Des techniques telle que la substitution peuvent étre employées pour éliminer
les variables engendrant ces discontinuités.

1. INTRODUCTION 2. DEFINITION OF DISCONTINUITIES

Animportantaspect of modelling hybrid systemsisthe First, the definition of a discontinuous function s given.
specification of discontinuities. Physical systems nor- \we write limi., f(x) as f(xg), and lim. f(x) as
mally do not exhibit discontinuous behaviour. Models f(xér) A function f (x) is discontinuous if a valugy
f h ms ar ractions. Detail is omi in_. . ; - ; -
of such systems are abst acf[o s. Detail is 0 tted. exists forwhlchf(xd)andf(x;r) exist, andf (x ) #
order to reduce the complexity of the models. In this N . .
. . ) . f(xgq).In[CEQT 93], such a functioif (x) is referred
way, discontinuities can be introduced into the mod- . . .
o - to as aD-function, whereas a continuous functigfx)
els. Many languages that have facilities for specifica- . . . T 9g(x) ;
. . A . . with a discontinuous derivative(x) = <= is referred
tion of discontinuities are continuous-time languages to . : dx
. . . N to as aDD-function. In this paper, we use the teir
which constructs for discontinuity specification have — : o p
function instead oDD-function. In a similar wayD

been added. Two examples are ACSL [MG 76] and f . d Id be defined. but th f
Dymola [EIm 94]. They language is based on a dif- _unctlons _(an 'S0 on) could be defined, l.Jtt €y are o
. little practical importance. Second, two kinds of vari-

ferent design philosophy. It consists of two parts: a T ] . . .
e . : ables are distinguished: continuous and discrete vari-

part for specification of continuous-time systems, and a : . . .
ables. The value of a continuous variable is determined

part for specification of discrete-event systems. By us- ~ . . .
; S ) . mainly by equations, whereas the value of a discrete
ing combinations of the discrete-event and continuous- . ; : ;

variable is determined by assignments.

time language constructs, different types of discontinu-
ities can be easily specified. This paper defines different The value of a variable can be represented by a func-
types of discontinuities and treats the facilities for dis- tion defined on time. Consider a continuous variable
continuity specification of ther language. The paper ¢, the value of which is represented by functiaf)

also gives insight into how discontinuities affect the (wherer represents time). Variableis D-continuous
operation of a simulator, and treats how discontinuities or D’-continuous ifc(¢) is aD function orD’ function,

can be successfully handled. respectively. The functiodi(z) that represents the value



of a discrete variabld is always aD function (unless proc nameparameter declarations=
itis constant), because discrete variables change atdis- | variable declarations initialization

crete points of time only. | DAEs| discrete-event statements

Discontinuities are relevant for models with continuous

variables. Such a model hageor D’ discontinuity if Al data types and variables are declared as either con-
a time pointrg and a O- or D'-) continuous variable  tinuous or discrete. The value of a discrete variable is
¢ exist for whichc(ty) # c(tf) or /(1) # c'(t]), determined by assignments (e:g= 0). Between two
respectively. The discontinuity occurszat= tg when  subsequent assignments, the variable retains its value.
c(t) changes frona(rg ) toc(zy ), orc’(t) changes from - The value of a continuous variable, on the other hand,
(tg) to '(t7). A model is also said to have a0 is determined by equations. An assignment to a con-
discontinuity if it has a continuous variable that can be tinuous variable (e.g: ::= 0) determines its value for
represented as B function of another continuous  the current point of time only. Some discrete data types
variable (see Section 4.2). are predefined such as bool (boolean), int (integer) and
real. Since all continuous variables are assumed to be
of type real, they are defined by specifying their units
only. For example, the declaration: [m/s] defines a
continuous variable.

3. INTRODUCTION TO THEx LANGUAGE

3.1 Design
Differential algebraic equations are separated by com-

The x language has only one language construct thatmas:DAEl, DAE, ..., DAE,. A DAE can be anormal

has been designed especially for discontinuity han- equation or guarded equation. The latter is used when

dling: guarded equations, which are treated in the nextine get of equations depends on the state of the system.

section. All other language elements are general pur-The syntax i§ b1 —> DAES. [ ... [| by —> DAES, ].

pose constructs that are required for continuous-time pagg (1 <i < n) represents one or more DAES. The

and discrete-event systems specification. The language,gglean expressiob; denotes aguard. At any time,

has been designed from the start as a hybrid languagest |east one of the guards must be open (true), so that

trol of discrete-event systems, continuous-time sys- gelected.

tems and combined discrete-event / continuous-time ] ) . )
systems. The discrete-event part gf is a CSP-like real-time

] concurrent programming language for which we refer
A small number of flexible, orthogonal (elements can q [MFRN 95]. Time passing is denoted by 7, where
be freely combined and have no overlap) discrete-event; is an expression of type real. A process executing
and continuous-timg language constructs allow dif-  thjs statement is blocked until the time is increased by

ferent types of discontinuities to be specified in an , time-units. Repetition of statements is denoted by
elegant way. Interaction between the continuous-time «[ S ]

and discrete-event part plays a central role in discon-
tinuity specification. This is a different approach than The x selection statement is a guarded command
the one taken in the gPROMS language for example, [b1 — S1 [ ... [ by — S, ]. The boolean expres-
where the continuous-time part has been designed forSionbi (1 <i < n) denotes guard, which is open i,
physical systems specification, and the discrete-event€valuates to true and is otherwise closed. After evalua-
part for operating procedure modelling. As a result, the tion of the guards, one of the statemefitassociated
continuous-time part of gPROMS has two language With an open guard; is executed.
elements for physicochemical discontinuity specifica- By means of thetate event statemen¥ r, the discrete-
_t|pn: one for spemflcathlj of_‘revers_lble’ dlscont|nu- event part of a process can synchronize with the
ities, and one for spec_|f|cat|9n of _‘|rr<_a\_/er5|ble' and  continuous-time part of a process. Executionvof,
‘asymmetric and reversible’ discontinuities [BP 94].  wherer is a relation involving at least one continu-
ous variable, causes the process to be blocked until the
3.2 Syntax and semantics relation becomes true.

In this paper, a small subset of the language is treated.
We do not treat the language elements for modelling 4. DISCONTINUITY SPECIFICATION INx
parallel processes that interact by means of mes-

sage passing and synchronization. For these and otheDiscontinuities can be specified jnby means of:
aspects of they language, we refer the reader to

[BRG 96,BGR 97]. (1) Assignments to discrete variables occurring in

equations
A process may consist of a continuous-time part only (2) Guarded equations using continuous variables in
(DAEs differential algebraic equations), a discrete- the guards
event part only, or a combination of both. (3) Functions



(4) Assignments to differential variables. | [ b— AW = Oset— Qo
0 -b— AN =—Q
]
4.1 Assignments to discrete variables occurring in 00 = ky/pgh

. ) i Vh > heet; b :=false
A simple tank level control system is used as an exam- 1

ple. The level of the liquid in the vessel is kept close 1
to the set point by switching the valve on and off. Lig-
uid flows out of the tank due to gravity. By means of
statements in the discrete-event part, hysteresis can b

Lp discontinuities

modelled (see proce3<CDy). D discontinuities can be introduced in the specifica-
tions by introducing a continuous varialg for the in-
Q coming flow. This gives three continuous variables (
> l [m], Qi, Qo: [M*/s]). The equatiom’ = n Qset— Qo
| of processI'CD;y is then replaced by two equations:

‘ Ah' = 0i — Qo
h , Qi =nQset
B Variable Qi is D-continuous, because it changes from
Q, 0 to QsetWhenn changes from 0 to 1.

ProcessICD;, can be changed in a similar way by in-
troducing the continuous variab{®, and replacing the
guarded equation fadh’ by the following two equa-

Fig. 1. The tank level control system.

tions:
D’ discontinuities
Ah' = Oi — Qo
The specification of the tank level proceB€D; fol- [ b — Qi = Oset
lows below { andg are constants). The discrete vari- l-b— Q=0

ablen gets the values 1 and 0 in the discrete-event part. ]

As a result of this, the equatioA”’ = nQset — Qo

changes fromih’ = Qset— Qot0 A’ = —Qo. There- 4 5 Guarded equations using continuous variables in

fore, variable is D’-continuous. This way of specify- e guards

ing discontinuities leads to short and clear models. In

the specification below, the incoming flow is switched |n this case, the discontinuity is specified in the

on whenh < hget — hnys and off when > hger. The continuous-time part of the language. Discrete-event

hysteresis thus equalsys. statements are not required. The specification of hys-
proc TCDy(A. ho. hset hnys, k. Oset : real) = teresis in this way is, however, not possible.
[7:Im], Qo:[m®/s], n:int
. -
ihuo=ho;n:=0 D’ discontinuities
[ J—
| Al =nQset— Qo In this example, the on/off valve used in the previous
» Qo =kv/pgh section is replaced by a valve that can be adjusted lin-

| %[ V1 < hset— hhys; n:=1 early between fully open and fully closed. The con-
V> hsety n:=0 troller is now a continuous-time controller instead of
] a discrete-event controller. The model of the complete
1 system s specified below. The equationffyhas been
Since the only values used for variablare 1 and 0,a  removed by substitution.
boolean vgnable can also be used. Such a_boolean vari- proc TCPC(A, o, hser k. Kp. Qset: rea) =
able requires the use of a guarded equation as shown L ml, O [m3/sl, u:[-]
below. The boolean variableis true when the valve is h j.: h’ e T
open and false when itis closed. This way of specifying '~ 0 —
discontinuities is more flexible, because several equa- | A" = Qi —ky/pgh
tions can be specified after the arrows of the guarded *  “ = Kp(hset—h)

equation (e.g. see proceB®V in Section 4.2). ’ E g j 0 -1 : g‘ = OQ
Su= i = Ul set

proc TCD2(A, ho, hset, hinys, k, QOset: real) = lu>1 —> Qi = Oset
[h:[m], Qo:[m3/s], b: bool ]
s h = hg; b:=false 1



Thetankis represented iy’ = Qi — k+/pgh, and the
controller byu = Kp(hset—h). The valve is represented
by the guarded equation

[u<O — 0i=0
[0<u<1-— Qi =uQset
lu>1 — Qi = Oset

]

In this example, continuous variab{ can be repre-
sented as &’ function ofu.

D discontinuities

Specification of D discontinuities is explained by

The clip function simplifies the process equations. It
models the saturation phenomenon that often occurs in
models. The function needs to be defined only once
and can then be used in different processes.

4.4 Assignments to differential variables

Modelling is specifying a system in an abstract way.
The level of abstraction is determined by the amount
of detail the modeller wants to include in the model.
Consider for example a tank. Filling and emptying of
the tank can be described by means of a differential
equation. If the modeller prefers to specify the filling

means of a tank, represented in Fig. 2, that flows over of the tank in a more abstract way with less detalil,

when the leveh of the liquid in the tank is higher than
the maximum levehnax. The x specification follows
below. VariableQy is D-continuous, and it can be rep-

resented as A function of#.
Qx

Q
Q

Fig. 2. Tank with overflow.

proc TOV(A, ho, hmax, Qi, k : real) =
[/ :[ml, Qo, Ox : [M3/s]

; h i=ho
| [ h<hmaxV Qi < Qo — Ah'= Qi — Qo
, Ox=0
I h>hmaxA Qi > Qo —> Ah'=0
, Ox=0i— 0o

1
, Qo =ky/pgh
1

4.3 Functions

Discontinuities can also be present in explicitly defined
x functions. Consider for example the valve from pro-
cessTCPCin Section 4.2. This valve can also be mod-
elled by means of al§’) x function. The function is
shown below.

func clip(xmin, X, Xmax : reah) — real=
[[x =< xmin —> 1 Xmin

[ Xmin <X < Xmax —> 1T x

[ x > Xmax —> 1 Xmax

]
||

Statementt x means: return the value of Using the
function clip, the equations of proce$€PC can be
simplified to
AN = Qi — k\/pgh
s u= Kp(hset— h)
, Qi =clip0,u, 1) - Oset

assignments to differential variables can be used. In
the following specification, a tank is repeatedly filled
and emptied.

proc TK(Vset, QOsetin, Osetout: real) =

[V :[m3], n:int

; Vi=0;n:=0

| V' = —nQsetout

| [ V ii= Vset; AV/Qsetin
;n=1,VV=0;n:=0
I

|

Filling of the tank is modelled by means of a disconti-
nuity: the volume is instantly increased Yget (V ::=
Vset)- Subsequently, time passing of the filling opera-
tion is modelled in the delta statemextV/ / Qsetin. Re-
versing the order of the two statements is also possible
(A V/Qsetin; V ::= Vse. Emptying of the tank is mod-
elled using the differential equation’ = —n Qsetous

4.5 Combinations

A somewhat more complex example, that combines as-
signments to discrete variables occurring in equations
and assignments to differential variables (Sections 4.1
and 4.4), deals with modelling of dry friction as shown
in Fig. 3.

Fig. 3. Dry friction.

Adriving force Fy (Fg = sin0.257 7, wherer isthe cur-
renttime) is applied to a body on a flat surface with fric-
tional forceF;. When the body is moving with positive
velocity v, the frictional force is given bys = uFy,
whereFy = mg. When the velocity of the body is 0, the
frictional force neutralizes the applied driving force. If
the driving force becomes bigger thagFy, the body
suddenly starts moving according ¥ — Ff = mv’,



whereF; = wFN (u < wo). In procesdrictions, de-
fined below, discrete variablerepresents the state of
the process; it can have the valuess, STOR, andPOs

These values correspond with negative, zero, and pos-

itive velocities respectively of the body. As a result of
the different equations for the three states, varidhle
is D-continuous.

proc Frictionsi(e, u, o, m : real) =
[ Fi, Fg, Fn : [N], x : [m], v:[m/s]
, s : {NEG, STOP, POS
;x n=—-2;v:=0; 5 :=STOP
| Fg =sin025rt, Fy = mg
, V=Fq—F)/m, x' =v
, [ s =NEG — F; = —uFy
[l s =sTOP—> Ff = Fy
[ s=pPOS — Ff = uFn
]
| x[ s =STOP; V F4q > uoFn — s :=POS
svi=¢
[ s =sTOP;, V Fy < —uoFN —> s := NEG
V= —¢
[ s #sT0OP, V=0 —> § := STOP
1
1

The discrete-event part of procd3stction; consists of
a selective waiting statemerit (.. [ ... [ ... ], e.0.
see [BGR 97]) that is repeated foreve).(If boolean
expressions = STOPis true and state eve Fy >
uoFn succeeds, then the state switche®¢s (s :
P09, causing a different equation to be active in the
continuous-time part. The velocityis then assigned
a very small value in order to prevent the state event
V v = 0from occurring immediately. Now that the state
equalsros boolean expressians£ sToOPis true. This
means that state eveRtv = 0 is awaited. When
becomes equal to 0, the state changesrtwpagain.

ProcesdFrictiony, that follows below, is a more de-
tailed model. It models that a small amount of energy
is required to switch from statsTOPto statePOsor
NEG. For this purpose, a fourth statry is introduced.

If | Fg| becomes bigger thamg Fy, the state switches
to TRY. In this state, the frictional force equalg Fy .

If the driving force causes the velocity of the body to
become bigger than (a small user defined value, e.g.
10-9), the state switches #os If, however, the driving
force falls back below.o Fy, the state switches back
to sTOR Fig. 4 shows the results of a 10 second simu-
lation run for the procesBriction; andFrictiony. The

, [ s =NEG — F; = —uFN
| s =STOP—> F;f = Fy
[ s =TRY — F; = sign(Fy) - uoFn
[ s =POS — Ff = uFn
]
| *x[ s = STOP; V |Fy| > noFN
—> § :=TRY
;L Vu>e —> 5 := POS
[Vv<e —> 5 := NEG
I VIF4| < uoFN —> s :=STOP; v ::=0
]
[ s #sTOP, Vv =0 — 5 := STOP
]
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Fig. 4. Friction simulationg = 0.1, uo =
0.18,m = 1,6 = 107>, g = 10).

5. DISCONTINUITY HANDLING IN THE
SIMULATOR

Simulation of a hybrid model is a repetition of two al-
ternating phases: the ‘discrete-event phase’ which in-
volves execution of statements at the current discrete-
event time point, and the ‘continuous-time phase’
which involves solving of equations while time is ad-
vanced to the next discrete-event time point. At the end
of adiscrete-event time point, when no more statements
can be executed, a non linear equation solver is called.
This solver calculates a consistent initial state for the
beginning of the subsequent continuous-time phase.
This entails, among other things, calculation of the val-
ues of the algebraic variables. In the continuous-time
phase, a differential algebraic equation solver (DASSL,
[Pet 83]) calculates the continuous variables as a func-

difference between the results of the two processes istion of time until the next discrete-event time point.

too small to be shown graphically.

proc Frictions(e, u, po, m : real) =
[ Fi, Fg, Fn : [N, x : [m], v:[m/s]
, s : {NEG, STOP, TRY, POS
i xn=-2;v:=0; s :=STOP
| Fg =sin0257t, Fy = mg
vV =Fqg—F)/m, x' =v

3

Discontinuities can occur either in the discrete-event
phase or in the continuous-time phase.

Discontinuities P’ and D) that occur in the discrete-
event phase are caused by assignments to discrete or
differential variables (Sections 4.1, and 4.4). In this
case, the non linear equation solver, called at the end
of the discrete-event phase, calculates a new consistent
initial state for the continuous-time phase.



A discontinuity in the continuous-time phase is caused by means of symbolic analysis and manipulation of the
by a guarded equation (ejgh < hmax —> Ox =01 equations, so that the modeller no longer needs to do
h > hmax—> Ox = Qi — Qo 1) inwhich adifferentset this.
of equations becomes valid, or by a function (Section
4.3). The discontinuity is a result of guards € /max
andh > hmay) changing from true to false or vice versa, 6. CONCLUSIONS
because a continuous variablg ¢rosses a predefined
boundary kmax). D’ discontinuities in the continuous- A small number of flexible, orthogonal discrete-event
time phase (Sections 4.2 and 4.3) can be handled byand continuous-timg language constructs allow dif-
the DASSL differential algebraic equation solver. Ap- ferent types of discontinuities to be specified in an el-
proaching a discontinuity, it reduces the step size until egant way. Discontinuities that occur in the discrete-
the exact time point of the discontinuity is found. After event phase are easily handled by calculation of a new
the discontinuity, the step size is gradually increased. initial state at the end of the discrete-event phase. In
More efficient techniques, that use the root finding al- the continuous-time phase, the DASSL differential al-
gorithm of the solver to quickly find the discontinu- gebraic equation solver used in thsimulator handles
ity, are possible, but these are not treated hBréis- D’ discontinuities, but cannot handiediscontinuities.
continuities in the continuous-time phase (Section 4.2) By means of techniques such as substitution, variables
cannot be so easily handled. The DASSL solver, like that cause the discontinuity can be removed.
most other differential equation solvers, cannot handle
D discontinuities. Therefore, thed® discontinuities
must first be removed. How this can be done is treated ACKNOWLEDGEMENT
in the next section.
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_ ) o for the idea of substitution of continuous variables.
5.1 RemovingD discontinuities

D discontinuities can be removed by removing the REFERENCES
continuous variable by substitution. Consider, for ex-
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) “Hybrid modelling in discrete-event control sys-
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a substitution equation. The meaning of the substitu- Language — User's ManualDynasim AB, Lund

tion equation forQy is that whenever the value @iy Sweden. ' '

is needed, 0 is substituted when< /iimax v Qi < Qo, [MFRN 95] J.M. van de Mortel-Fronczak, J.E. Rooda,

aani — Qols substituted Whe}f’ = hmax A Qi = Qo- N.J.M. van den Nieuwelaar. “Specification of

This means that the only equations that are giventothe 4 fexible manufacturing system using concurrent
[ . — . . .

DASSL solver areAr’ = Qi — Qo — Ox and Qo = programming.”Concurrent Engineering: Research

k+/pgh, whereh and Q. are the two continuous vari- and Applications3(3), 187—194.

ables.Q; is a constant parameter, ag is substituted [MG 76] E.E.L. Mitchell, J.S. Gauthier. “Advanced
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