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Abstract
The most difficult aspect of concurrent discrete-event control
is the handling of errors. Most present day languages for
concurrent control system specification do not provide ade-
quate mechanisms for exception handling, which is a major
limitation on their effectiveness. In this paper, a new mecha-
nism for exception handling in concurrently executing dis-
crete-event control processes is treated, which simplifies the
complex task of robust control system specification. The
mechanism is based on constraint monitors, and can be used
in conjunction with known mechanisms for exception han-
dling in sequential programs. Constraints and constraint
monitors are new concepts which are essential for dealing
with exceptions in control systems. The constraints of a
statement are conditions which must be valid throughout the
execution of the statement. Constraint monitors are used to
specify the constraints of a statement in a structured way,
leading to programs in which the code for normal operation is
separated from the code for exception handling. During the
execution of the statement, the specified constraints are
monitored at all encountered interaction points. If a con-
straint violation is detected, an exception is raised. In this
way, the invariants of a process remain valid, finalization
obligations of statements are executed, deadlock in the case of
exception occurrences is prevented, and exceptions are not
raised in processes in which no constraints have been vio-
lated. Constraint monitors are explained using a CSP-like
language to which exception handling constructs have been
added. The constructs have been chosen in such a way, that
the resulting syntax and semantics are simple and especially
suitable for the specification of robust control systems. The
mechanism is finally illustrated by an example of the specifi-
cation of a control system.

1. Introduction
An important aspect in the design of industrial control sys-
tems is the handling of errors in the controlled systems.
Controlled physical systems undergo deterioration due to
wear and aging; components have tolerances and robots
suffer from imprecise positioning. Such characteristics lead to
errors. The amount of code required for the recovery of such

errors is usually many times greater than the amount needed
to control the system under error-free circumstances ([1]).

An important concept which facilitates the handling of errors
in a structured way is the concept of exception. Most mecha-
nisms available in programming languages, or proposed in
articles, are restricted to exceptions within a sequential proc-
ess (e.g. [2], [3]). In this paper, we describe the functionality
desired for the handling of exceptions in concurrently exe-
cuting discrete-event control processes, and define a new
mechanism which provides this functionality.

The concurrent programming language χ we use to specify
control processes is based on the real-time CSP-like ([4])
language described in [5]. The language χ, and its application
to the modelling of industrial systems, are described in [6]. In
our paper, exception handling constructs have been added to
the language. The resulting syntax and an informal explana-
tion of the semantics of the language is given in Section 2.
Section 3 deals with the basics of exception handling. In
Section 4, we introduce the new concepts of constraint and
constraint violation. In Section 5, the new mechanism, which
is based on constraint monitors, is introduced, and the syntax
and semantics of the mechanism is explained. This mecha-
nism is primarily intended to deal with errors in the con-
trolled system, and not with incorrect programs. In Section 6,
the use of the mechanism is illustrated by an example. Fi-
nally, in Section 7, we describe the basic functionality of some
representative known mechanisms for the handling of excep-
tions in a multi-process environment.

2. The language χ
The most important elements of the language χ are defined
below, using an extended BNF notation. Non-terminals are
represented in italics. Terminals are either symbols or identi-
fiers in normal sans-serif type-face. Some non-terminals are
not further defined: c, v, exc, and pr denote identifiers repre-
senting a channel, a variable, an exception, and a process,
respectively; exp denotes an expression, re denotes a real
expression, b denotes a boolean expression, D denotes a
declaration, and T denotes a type. The braces in {X} are
BNF symbols indicating zero (empty) or more repetitions of
the construct X. The notation {X}0/1 indicates zero or one
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occurrence of X. The brackets [ ] are terminals.

I ::= c?v | c~
Y ::= I | c!exp | ∆re
GY ::= b; Y → S {⊆ b; Y → S}
GB ::= b → S {⊆ b → S}
S ::= skip | v := exp | →exc | Y (2.1)

| [GY] | *[GY] | [GB] | *[GB]
| |[S † EH]|
| |[S ‡ CM]|
| S; S

EH ::= skip | v := exp | →exc | Y
| [GYEH] | *[GYEH] | [GBEH] | *[GBEH]
| ⇒ | ⇐ | ◊exc
| EH; EH

GYEH ::= b; Y → EH {⊆ b; Y → EH }
GBEH ::= b → EH {⊆ b → EH}

CM ::= b; I → SCM {⊆ b; I → SCM} (2.2)
SCM ::= skip | v := exp | →exc | Y

| [GYCM] | *[GYCM] | [GBCM] | *[GBCM]
| SCM; SCM

GYCM ::= b; Y → SCM {⊆ b; Y → SCM }
GBCM ::= b → SCM {⊆ b → SCM }

cl ::= c{, c} : T
PR ::= proc pr (cl{, cl}) = |[{D}0/1 S]|

In the sequel, the non-terminals b, c, exc, exp, v, CM, EH,
GB, GY, I, S, Y (with or without subscripts) are also used to
represent (the set of) language elements that can be con-
structed using the non-terminal as the start symbol.

The statements |[S † EH]| and |[S ‡ CM]| may not be used
inside exception handlers EH and/or constraint monitors
CM, nor in any of the sub-statements occurring in handlers
or constraint monitors. This requires the additional produc-
tion rules GYEH, GBEH, SCM, GYCM, and GBCM. They are
very similar to the production rules S, GY, and GB. In fact
the following relations exist: SCM ⊂ S, GYCM ⊂ GY,
GBCM ⊂ GB, and also CM ⊂ GY.

Some abbreviations are defined in order to achieve a more
compact notation. By S1 :≡ S2 we mean that S1 may be
abbreviated to S2. The following abbreviations are used:
• *[true → S] :≡  *[S].
• true; Y → S :≡  Y → S.
• Y → skip :≡  Y.
• |[|[X]|]| :≡  |[X]|,  for X ∈ {S † EH, S ‡ CM}.
• |[D |[X]|]| :≡  |[D X]|,  for X ∈ {S † EH, S ‡ CM}.

We refer to |[X]|, where X ∈ {S, S † EH, S ‡ CM}, as a block.
We define ⊆n

i=1 (Xi) as X1 ⊆ X2 ⊆ … ⊆ Xn, for n ≥ 1.

The semantics of many language constructs depends on
whether the language is used as an abstract specification
language, for instance for simulation purposes, or for actual
real-time control. We treat (in an informal way) the seman-
tics of the language χ from the viewpoint of actual real-time
control.

Processes have local variables only; all interactions between
processes take place by means of channels. A channel con-
nects two processes or systems. Synchronization channels are
symmetrical. Communication channels are used for output in
one process and input in the other. Channels are declared in
systems. In this paper, system definitions are represented

graphically. Channels are also declared as process parame-
ters, in which case the usage of the channel is declared as
either output (e.g. c : !real), input (e.g. c : ?real), or synchro-
nization (c : ~void). A communication channel is represented
graphically by an arrow, a synchronization channel by a line;
processes are represented by circles.

The statements c!exp and c?v, where c is a channel connecting
two processes, denote communication by means of synchro-
nous message passing. Execution of c!exp in one process
causes the process to be blocked until c?v is executed in the
other process, and vice versa. Subsequently the value of
expression exp is assigned to variable v.

The statement c~ denotes synchronization between two
processes. Execution of c~ in one process causes the process to
be blocked until c~ is executed in the other process.

The statement ∆t denotes delays or time-outs. A process
executing ∆t is blocked for a duration of t seconds.

The statement [GY], or [⊆n
i=1 (bi; Yi → Si)] denotes selective

waiting. The boolean expression bi denotes a guard, which is
open if bi evaluates to true and is otherwise closed. An event
statement Yi which is prefixed by a guard bi (bi; Yi) is enabled
if the guard is open and the communication or synchroniza-
tion action specified in Yi can actually take place. If all
guards are closed, the selective waiting statement terminates
after evaluation of the guards. Otherwise, the process exe-
cuting [GY] remains blocked until at least one event state-
ment is enabled. Then, one of the enabled event statements
Yi is chosen for execution, followed by execution of the corre-
sponding Si. Time-outs are event statements of the form ∆t
that are prefixed by a guard (b; ∆t). A process cannot be
blocked in a selective waiting statement with time-outs for
longer than the smallest time-out time ts (provided the asso-
ciated time-out guard is open). If no other event statements
are enabled within that period, a statement S associated with
an enabled time-out of time ts is executed.

The statement [GB], or [⊆n
i=1 (bi → Si)], denotes selection. If

all guards are closed, the statement terminates after evalua-
tion of the guards. Otherwise, a statement Si associated with
an open guard bi is executed.

The iteration statements *[GB] and *[GY] denote repeated
execution of [GB] and [GY], respectively.  The iteration
terminates when all guards are closed.

Exceptions are denoted by identifiers and are declared in the
following way: ED ::= exception exc {, exc}. They are raised
by means of the statement →exc. An exception handler is
denoted by EH. The statement |[S † EH]| defines an exception
handler EH for the statement S. The construct EH can also
be referred to as the exception handler of the block |[S † EH]|.
The operator ◊ on exceptions is used to determine the excep-
tion raised last in a process. The retry statement ⇐ and the
return statement ⇒ are statements which cause an exception
handler to terminate. Exception handling constructs are
explained in more detail in Section 3.

The non-terminal CM denotes one or more constraint moni-
tors. Constraint monitors are explained in Section 5. The
statement |[S ‡ CM]| defines constraint monitors CM for the
statement S. A single constraint monitor is specified as
b; I → SCM. There is an important restriction in the specifica-
tion of the statement part SCM of a constraint monitor: the
execution of SCM must terminate by raising an exception. An
example of a valid constraint monitor is: emg~ →
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mmi!"emergency"; →kill, or c~ → [b1 → →e1 ⊆ b2 → →e2]. An
example of an invalid (albeit syntactically correct) constraint
monitor is: emg~ → mmi!"emergency".

Although most statements are allowed in exception handlers
EH and in the statement parts SCM of constraint monitors
b; I → SCM, it is good programming practice to keep them
simple. In fact, many constraint monitors are of the form
true; c~ → →exc, which may be abbreviated to c~ → →exc.

Processes are defined by PR. All channels of a process must
be declared as formal parameters in the parameter list. Decla-
rations are separated from subsequent statements by the
symbol ‘|’.

3. Basics of exception handling
We have chosen the exception handling constructs defined in
Section 2 in such a way that the resulting syntax and seman-
tics are simple, and especially suitable for the specification of
robust control systems. In particular, our choice of constructs
makes it easy to specify the finalization obligations of state-
ments. Finalization obligations are actions which need to be
executed when a statement is terminated with an exception,
independently of the type of exception (for an example, see
Section 4.2). Our exception handling mechanism is similar to
that of Eiffel ([7]). Two differences are that Eiffel does not
have a return response, and that where we use the ◊ operator
to determine the exception raised last in a process, Eiffel
imports the variable exception from class EXCEPTIONS.

An exception occurs when a program-unit in execution can-
not achieve its goal. We define an exception occurrence to be
a state of a sequential process, possibly combined with the
state of the environment of the process, such that some pro-
gram-unit which is being executed by the process cannot
achieve its goal. In this definition, the environment of a
process consists of all other processes and systems with which
the process interacts. An exception is associated with a class
of exception occurrences ([3]). If we consider correct programs
only, then exception occurrences in a process are always
caused by interaction of the process with other processes. An
important difference between errors and exceptions is that
the latter are used only in programs, whereas errors occur in
both programs and physical systems. Errors in controlled
machines usually cause exception occurrences in the control
processes.

An example of an exception occurrence is the state of a proc-
ess which is attempting to compute the square root of a
negative number. Another example deals with a program-
unit, the goal of which is to make a cylinder extend within 5
seconds. The state of the control process executing the pro-
gram-unit, combined with the state of the controlled system,
is an exception occurrence if the cylinder is blocked while
extending, if there is no air pressure, or if the cylinder is not
extended within 5 seconds for any other reason.

The semantics of our exception handling constructs is treated
in an informal way. If an exception occurrence is detected, a
corresponding exception should be raised. This causes a
change in the normal control flow. The statement which is
executed after the raising of an exception exc (→exc), is the
exception handler (EH) of the smallest block, enclosing the
statement →exc, which contains a handler (|[S † EH]|). In this
case, the exception handler is said to have caught the raised

exception exc. An exception handler may terminate in four
different ways: with the propagate response (default); the
return response (execution of ⇒); the retry response
(execution of ⇐); or by raising an exception (execution of
→exc). We have adopted the termination model, so that in all
four cases the termination of the handler EH implies the
simultaneous termination of |[S † EH]|. The termination
model is much simpler than the resumption model, in which
the resume response from a handler causes execution to
resume right after the statement →exc which raised the excep-
tion caught. We consider the resume response to be undesir-
able, because the exception handlers of all enclosing blocks
may cause resumption at the statement which syntactically
follows →exc. In order to be able to determine whether the
resume response is acceptable, the handlers must be aware of
the statements which follow →exc. This conflicts with the
concepts of modularity and abstraction. Examples of pro-
gramming languages which have adopted the termination
model are Modular Pascal ([8]), and Ada ([9]).

We continue with the responses from a handler. Consider the
program fragment |[S1 † EH]|; S2. The handler EH terminates
with the return response when the ⇒ statement is executed in
EH. The next statement to be executed is S2. The handler
terminates with the retry response when the ⇐ statement is
executed in EH. The result of this is that the statement
|[S1 † EH]| is first terminated, and then re-executed. Raising
an exception exc' in the handler EH (execution of →exc'),
causes the exception handler of the smallest block enclosing
the statement |[S1 † EH]| to be executed. It amounts to re-
placing the terminated statement |[S1 † EH]| by the execution
of →exc'. If neither the ⇒, ⇐, nor →exc statement is executed
in EH, the handler terminates with the propagate response
after termination of its last statement. The propagate re-
sponse is therefore the default response of exception handlers.
It causes the exception handler of the smallest enclosing block
of |[S1 † EH]| to be executed. The propagate response
amounts to replacing the terminated statement |[S1 † EH]| by
execution of →exc, where exc is the exception caught by the
handler. It is chosen to be the default response, because in
this way, accidental omission of a response causes the excep-
tion to be propagated, leading to a controlled termination of
statements. If, however, the return response were to be issued
in this case, the program would be allowed to continue nor-
mally in an incorrect state with the likelihood of catastrophic
consequences.

In order to be able to determine in a handler which exception
has been raised, the operation ◊ is introduced. The boolean
expression ◊exc evaluates to true if exc is the exception raised
last in the process in which ◊exc is evaluated, and to false
otherwise.

4. Constraints
4.1 Definitions
In this section, the concepts ‘constraint’ and ‘constraint
violation’ are defined. These concepts are essential in order to
determine the requirements of a mechanism for the handling
of exceptions in control systems. Definitions of the two terms
are given below.

A constraint of a program-unit is a condition over the state of
the environment of the process executing the unit, which
condition is invariant over the unit; it must be valid through-
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out the execution of the unit in order that the unit may
achieve its goal. The environment of a process consists of all
other processes and systems with which the process interacts.
In the rest of this paper, we use the term statement instead of
the more general term program-unit.

A constraint violation is a state of the environment of the
process executing a statement which state does not satisfy the
statement’s constraint.

An example of a constraint is that an emergency button must
remain deactivated, or that a sensor detecting the entry of a
person into a hazardous production area must remain deacti-
vated during the execution of statements which activate the
production processes in the production area.

The examples given above deal with constraint violations in a
controlled system. A second type of constraint (violation)
relates to the raising of exceptions in interacting control
processes. Raising an exception in a process which interacts
with another process causes deadlock if the other process
remains blocked in a synchronization or communication
action which will no longer succeed (due to the raised excep-
tion). In such a case, constraints of statements in both inter-
acting processes can specify that certain statements in the
other process must not be terminated prematurely with an
exception. This kind of constraint (violation) is illustrated by
the example in Section 6.

A constraint violation causes an exception occurrence in the
process executing the statement of which a constraint is
violated, because the constraint violation makes it impossible
to achieve the goal of the statement. Therefore, an exception
must be raised in a process when a constraint of an executing
statement is violated.

4.2 Where to raise exceptions
In the case of a constraint violation, an exception must be
raised in the process as soon as possible. It is undesirable,
however, to raise such an exception immediately, regardless
of the state of the process. Doing so could easily lead to errors
in the state of the process, either because finalization obliga-
tions are not executed, or because invariants cannot be re-
stored to a valid state. Consider, as an example of the first
case, the following statement M:

M = |[ m!true; [endPos~ ⊆ ∆10 → →timeout]; m!false (4.1)
† m!false
]|

A vehicle is driven by a motor m to an end position indicated
by a sensor endPos, where the motor is switched off. If an
exception occurs, the motor is also switched off. Therefore,
this action is a finalization obligation of the statement M (see
Section 3). Suppose, that the vehicle does not reach the end
position within 10 seconds, so that the timeout exception is
raised. This will cause the statement m!false in the exception
handler to be executed. Suppose, that the emergency button
is pressed at the moment that execution of m!false is about to
start in the exception handler. If this constraint violation
would immediately result in the raising of an exception, the
statement m!false would not be executed, causing M to ter-
minate with the motor still running.

A second example deals with a statement S counting the
number of times a synchronization action takes place:

S =   count := 0; *[in~; count := count + 1] (4.2)

In this case, the loop invariant specifies that count equals the
number of times the synchronization action has taken place.
An invariant of a statement is valid before and after execu-
tion of the statement. During the execution of the statement
it can temporarily be invalid. If a constraint violation occurs
while the invariant of a statement is temporarily invalid, an
exception which causes the statement to be terminated may
only be raised when the invariant can be made valid again in
an exception handler. If, in the example, an exception due to
a constraint violation would be raised just before the assign-
ment in the loop, the loop invariant would be invalid, but it
would be impossible to return the invariant to a valid state in
an exception handler. The reason for this is that it is impossi-
ble to determine in a handler whether the exception due to
the constraint violation was raised just before or after the
assignment statement.

The need to raise exceptions caused by constraint violations
as soon as possible, without causing errors, leads to a solution
in which such exceptions are raised at interaction points, but
not in exception handlers. An interaction point in our lan-
guage is a statement of type Y or [GY]. Interaction points are
chosen, because they are the only points at which processes
can influence each other’s state. Also, experience suggests
that invariants either hold at interaction points, or else can
reliably be restored in exception handlers. This is elaborated
below.

Invariants that are related to the internal state of a process
normally hold at interaction points. The loop invariant in
(4.2) is an example of such an invariant. Another example is a
process which repeatedly receives an object at an interaction
point (e.g. c?x), and then adds the received object to a linked
list. During the addition to the linked list, pointers need to be
readjusted and invariants will temporarily be invalid. After
addition to the list, the invariants will be valid again and
other interactions may be executed.

Invariants that are related to the state of controlled processes
need not hold at interaction points. In (4.1) the invariant
specifies that the motor is off before and after execution of M.
After execution of m!true in M, the invariant will be invalid
temporarily. Such an invariant can be reliably restored in an
exception handler. In the example the motor is simply
switched off.

The computational delay introduced by raising the excep-
tions at interaction points only, is negligible for control sys-
tems where response times are crucial. This delay can never
be greater than the time required for computations that take
place from the termination of an interaction point until the
initiation of the next interaction point. During these compu-
tations, the control process executing the computations
cannot respond to changes in the controlled process, since
interactions are the only means to synchronize with the
controlled process. Therefore, in order to achieve adequate
response times, real-time control programs should be de-
signed in such a way that the computational delay is consid-
erably smaller than the required response time of the control
system.

5. Constraint monitors
Our new mechanism is based on constraint monitors. In a
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constraint monitor I → SCM, the synchronization or input
action I (c~ or c?v) is used for the specification of the con-
straint. A constraint violation is detected when action I
succeeds. As a result of this, the statement SCM will be exe-
cuted, terminating with an exception. Constraint monitors
make it possible to specify the constraints of a statement
(which may consist of a complex sequence of many other
statements) only once. The specification of a constraint by
means of a constraint monitor ensures that violations of the
specified constraint are monitored at each interaction point
that is executed during the execution of the statement, and
that the corresponding exception will be raised at an interac-
tion point when a constraint violation is detected.

A constraint monitor b; I → SCM is defined as being active (or
activated) in a process, when that process is executing a
statement |[S ‡ b; I → SCM]|, and b evaluates to true. Consider
the program fragment

S3; |[|[S4; S5 ‡ b1; I1 → SCM1]|; S6 ‡ b2; I2 → SCM2]|.

If a process A is executing the statement S4 or S5, and b1 and
b2 are true, then the constraint monitors b1; I1 → SCM1, and
b2; I2 → SCM2, are both active in A.

Consider a channel c connecting the processes A and B. If a
constraint monitor c~ → →exc is active in A, execution of c~ in
B will cause the exception exc in A to be raised when the next
interaction point in A is executed (assuming that the con-
straint monitor c~ → →exc is still active in A at that time, and
that the interaction point is not in an exception handler).

5.1 Semantics
The semantics of a block with constraint monitors |[S ‡ CM]|
is defined by means of a set of rewrite rules, which enable us
to rewrite the block |[S ‡ CM]| in terms of other statements
which no longer contain blocks with constraint monitors. For
this purpose, the language is extended with a prioritized
selective waiting statement [≥n

i=1 (GYi)], where

≥n
i=1 (GYi) =  GY1 ≥ GY2 ≥ … ≥ GYn.

The statement [≥n
i=1 (GYi)] is intended to be used only in the

rewrite rules for the definition of the semantics of |[S ‡ CM]|.
It is not intended to be used in programs. The statement is a
selective waiting statement with priority. It makes use of a
new operator ≥. The semantics of the statement is similar to
that of a normal selective waiting statement, which is ob-
tained by replacing the ≥ operator in

[GY1 ≥ GY2 ≥ … ≥ GYn] (5.1)

by the ⊆ operator:

[GY1 ⊆ GY2 ⊆ … ⊆ GYn]. (5.2)

The only semantic difference between (5.1) and (5.2) is that
in (5.1), the order of GY1 to GYn is relevant: the priority
decreases from left to right. Therefore, in (5.1) the priority of
GYx is higher than the priority of GYy, if x < y. If there is
none or only one GY (where GY can be any one of GY1 to
GYn) with enabled event statements, the statements in (5.1)
and (5.2) are semantically equivalent. If there is more than
one GY with enabled event statements in (5.1), the GY which
is chosen from these, is the one with the highest priority. If
the GY chosen has itself more than one enabled event state-
ment, then one of these is chosen in the same way as for a
normal selective waiting statement [GY].

A second extension of the language for the purpose of rewrit-
ing blocks with constraint monitors is realized by redefining
the production rule (2.2) for constraint monitors:

CM  ::=  b; I → SCM {⊆ b; I → SCM } | CM ≥ CM. (5.3)

In this way the constraint monitors defined by production
rule (2.2) are supplemented by constraint monitors of the
form

CM1 ≥ CM2 ≥ … ≥ CMn.

This kind of constraint monitor occurs only as a result of
applying rewrite rule (5.10). It cannot be used directly in χ
programs.

A block |[S ‡ CM]| can be rewritten in a form in which the
constraint monitors CM appear only in selective waiting
statements of the form [≥n

i=1 (GYi)] by means of the rewrite
rules (5.4) to (5.10). The statements of type S (S, S1, S2, Si,
and S'), that are used in these rules, can be any statement
that can be constructed with production rule (2.1). The
constraint monitors CM represent the constraint monitors
defined by production rule (5.3). The rewrite rules are de-
scribed below.

Assignments and the raising of exceptions are not affected by
constraint monitors:

|[X ‡ CM]| = X  for  X ∈ {skip, v := exp,  →exc}. (5.4)

Synchronization statements Y with constraint monitors are
transformed into prioritized selective waiting statements:

|[Y ‡ CM]| = [CM ≥ true; Y → skip] = [CM ≥ Y]. (5.5)

Selective waiting statements [GY] with constraint monitors
are rewritten as follows (likewise for *[ ]):

|[[⊆n
i=1 (bi; Yi → Si)] ‡ CM]| =

[CM ≥ ⊆n
i=1 (bi; Yi → |[Si ‡ CM]|)]. (5.6)

Constraint monitors affect only the statement parts of selec-
tion statements [GB] (likewise for *[ ]):

|[[⊆n
i=1 (bi → Si)] ‡ CM]| = [⊆n

i=1 (bi → |[Si ‡ CM]|)] (5.7)

Exception handlers are not affected by constraint monitors:

|[|[S † EH]| ‡ CM]| = |[|[S ‡ CM]| † EH]|. (5.8)

The reason for leaving the exception handler EH unaffected
by the constraint monitors CM, is that an important aim of
an exception handler is to perform finalization obligations.
Many such actions can be executed only by means of an
interaction, such as switching off a motor. Such an interac-
tion must be executed under all circumstances. Therefore, a
constraint monitor may never cause an exception to be raised
in the place of the execution of such interactions in exception
handlers.

A sequential composition of statements with constraint
monitors is rewritten as follows:

|[S1 ; S2 ‡ CM]| = |[S1 ‡ CM]| ; |[S2 ‡ CM]|. (5.9)

When nesting constraint monitors, the enclosed constraint
monitors (CM1 in (5.10)) are not affected by the enclosing
constraint monitors (CM2 in (5.10)). The enclosing monitors
take priority, and are therefore inserted before the enclosed
monitors:

|[|[S ‡ CM1]| ‡ CM2]| = |[S ‡ CM2 ≥ CM1]|. (5.10)
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The reason why enclosed constraint monitors are not affected
by enclosing constraint monitors is similar to the reason why
exception handlers are not affected by enclosing constraint
monitors. We wish to be able to guarantee that the execution
of the statement SCM of a constraint monitor b; I → SCM
cannot be aborted prematurely due to an enclosing constraint
monitor. The effect of rules (5.8) and (5.10) is that exceptions
due to violations of constraints specified in enclosing con-
straint monitors are not raised in enclosed exception han-
dlers, nor in the statement parts of enclosed constraint moni-
tors.

Although in some cases there need not be any difference in
priority between enclosing and enclosed constraint monitors,
there are many cases where the priority is important. This is
explained by means of an example. Consider the statement
|[S ‡ CM2]|, where

S = Sa; |[|[Y ‡ CM1]| † EH]|; Sb. (5.11)

The enclosing constraint monitor is CM2; the enclosed con-
straint monitor CM1. By substitution, the statement is
rewritten as

|[Sa; |[|[Y ‡ CM1]| † EH]|; Sb ‡ CM2]|.

Using (5.9) this is rewritten as

|[Sa ‡ CM2]|; |[|[|[Y ‡ CM1]| † EH]| ‡ CM2]|; |[Sb ‡ CM2]|.

By applying (5.8), the middle statement

|[|[|[Y ‡ CM1]| † EH]| ‡ CM2]|

is rewritten as

|[|[|[Y ‡ CM1]| ‡ CM2]| † EH]|.

Using (5.10), followed by (5.5) yields

|[[CM2 ≥ CM1 ≥ Y] † EH]|. (5.12)

In (5.12), the enclosing constraint monitor CM2 has a higher
priority than CM1, because it is listed first. The reason why
CM2 should have a higher priority than CM1 is described
below.

Suppose that, during execution of Y, the actions I1 and I2 of
both constraint monitors can succeed (let CM1 = I1 → →e1,
and CM2 = I2 → →e2). This means that both constraints are
violated. If I1 is chosen, the exception e1 will be raised. This
exception would not necessarily have to be propagated by
EH; EH could issue a return or retry response. Such a return
or retry response would be undesirable, because the con-
straint violation detected by CM2 requires that the state-
ment S in (5.11) is terminated as soon as possible with excep-
tion e2. Therefore, the action I2 of CM2 should be chosen,
causing exception e2 to be raised. The exception handler EH
must propagate this exception (after executing the finaliza-
tion obligations), because the exception must cause the ter-
mination of S.

Using the rewrite rules (5.4) to (5.10), any syntactically
correct block |[S ‡ CM]| can be rewritten in terms of state-
ments which no longer contain blocks with constraint moni-
tors. This is shown below.

All statements S are constructed using the production rule S,
which is defined in (2.1) and is repeated below.

S ::= skip | v := exp | →exc | Y
| [GY] | *[GY] | [GB] | *[GB]

| |[S † EH]| | S; S | |[S ‡ CM]|

For the first three alternatives (skip | v := exp | →exc), appli-
cation of rewrite rule (5.4) on |[S ‡ CM]| yields S. For the
subsequent alternatives, the rewrite rules (5.5) to (5.10) are
used. The result of rewriting |[S ‡ CM]| after application of
one rewrite rule, is that the constraint monitor CM is re-
moved (rule (5.4)), appears in a prioritized selective waiting
statement (rules (5.5) and (5.6)), or appears in one or more
blocks |[S' ‡ CM']| (rules (5.6) to (5.10)), where S' represents
a sub-statement used in S. The constraint monitor CM' is
different from CM after application of rule (5.10), and equal
to CM in all other cases. By recursively rewriting the blocks
|[S' ‡ CM']|, the resulting statement will eventually no longer
contain blocks with constraint monitors. The constraint
monitors then occur in prioritized selective waiting state-
ments only. Production rules (2.2) and (5.3) for constraint
monitors ensure that blocks with constraint monitors cannot
be used in the statement part SCM of constraint monitors.

5.2 Implementation
Based on the rewrite rules described above, an implementa-
tion of constraint monitors in χ can be realized. All active
constraint monitors are stored in a list L. When the execution
of a statement of type |[S ‡ CM]| is initiated, the constraint
monitor CM is added to the head of list L. Subsequently the
statement S is executed. When |[S ‡ CM]| is terminated, CM
is removed from L. If the list L is not empty, the execution of
statements of type Y and [GY] is changed in the way de-
scribed below. The execution of all other statements is not
affected by the constraint monitors of L.

A statement of type Y is executed as a prioritized selective
waiting statement

[CM1 ≥ CM2 ≥ … ≥ CMn ⁄ Y], (5.13)

where n is the size of list L. The constraint monitors CM1 to
CMn are the constraint monitors occurring in list L in that
order, CM1 being the head of the list.

A statement of type [GY] is likewise executed as a prioritized
selective waiting statement

[CM1 ≥ CM2 ≥ … ≥ CMn ⁄ GY]. (5.14)

The construct GY may also be written as ⊆n
i=1 (bi; Yi → Si). If

execution of (5.14) results in execution of one of the state-
ments Si occurring in GY, such a statement Si is also exe-
cuted using the constraint monitors in list L.

Rule (5.8) specifies that statements executed in exception
handlers are not affected by constraint monitors. Therefore
the execution of statements of type Y and [GY] is not affected
by the constraint monitors of L if the statements are being
executed in exception handlers.

6. An example
In this section, the use of constraint monitors is illustrated
using the control system of a simple robot that transports
products from workstation A to B. The specification of the
ideal control system without errors is given first, followed by
the specification of the control system with exception han-
dling.

The interface with sensors in the physical system is realized
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by means of channels in the model. If a channel has the same
name as a sensor, a synchronization action on the channel
succeeds when the sensor is on (activated). If the channel
name is prefixed with not (such as in notvac) a synchroniza-
tion action succeeds when the sensor is off (not activated).
Channels which are associated with actuators have the same
names as the corresponding actuators.

The robot is shown in Figure
1. A turning cylinder with
actuators aToA and aToB
turns the robot from position
A to B. The cylinder is freely
moveable when its actuators
are not activated. A product
can be picked up by means of
a suction cup, which is acti-
vated by actuator aV. The
sensor vac detects the pres-
ence of vacuum in the suction
cup. The product can be lifted
by means of a cylinder. Ini-
tially, the robot is assumed to

be waiting at workstation A with the suction cup up, and no
vacuum applied.

An informal graphical representation of the structure of the
control system is shown in Figure 2. Circles denote processes;
lines and arrows denote channels. Only the channels required
for interaction between the control processes are shown. The
following conventions are used in the channel names: req for
request and done for done; com for command and ack for
acknowledge; the subscripts A, B, V and T for WSA, WSB,
Vacuum and Transport, respectively.

6.1 No exception handling
The specification of the control processes without exception
handling is given below. The specification is not complete;
only the most relevant parts are shown.

Each of the processes WSA, RobotMaster and WSB has its
own start button which is pressed by the operator in order to
start the process. The types vCom and tCom are enumerated
types. They are defined as type vCom = on | off, and  type
tCom = up | down | toA | toB. The type bool denotes a
boolean.

proc WSA (startA, reqA, doneA : ~void) =
|[startA~; *[receiveParts; assembleProduct; reqA~; doneA~]]|

proc RobotMaster
( startR, reqA, doneA, reqB, doneB, ackV, ackT : ~void,

comV : !vCom,  comT : !tCom) =

|[  startR~;
 *[ reqA~; pick; doneA~;

comT!toB; ackT~;
reqB~; place; doneB~;
comT!toA; ackT~

   ]
]|,

where  pick = comT!down; ackT~; comV!on; ackV~;
comT!up; ackT~,

and  place = comT!down; ackT~; comV!off; ackV~;
comT!up; ackT~.

The processes Vacuum and Transport are slaves. Slaves
receive a command from their master (RobotMaster), execute
the command by operating actuators and reading sensors,
and consequently signal an acknowledge to the master. The
specification of the process Vacuum is as follows:

proc Vacuum
(comV : ?vCom,  ackV, vac, notvac : ~void,  aV : !bool) =

|[x : vCom | *[comV?x; doX; ackV~]]|,

where doX =
[x = on → aV!true; vac~ ⊆ x = off → aV!false; notvac~].

6.2 Exception handling using con-
straint monitors

In Figure 3, the channels necessary for exception handling are
shown. The complete model is a combination of the models
shown in Figures 2 and 3. Each of the processes WSA,
RobotMaster and WSB has its own emergency button. The
channels emgA, emgR, and emgB are associated with the re-
spective emergency buttons. The following additional con-
ventions are used in the channel names: eRA for exception
from RobotMaster to WSA; eAR for exception from WSA to
RobotMaster; and likewise for the other channels.

If an exception occurs in a process, the process will probably
no longer be able to perform the interactions that other
processes expect of it. This could easily lead to deadlock.
Therefore, for every control process, say A, an exception
handler is defined at the outermost level. In this handler, A
signals the other processes (using [e~ ⊆ ∆thandle] or similar
statements such as *[ea~ ⊆ eb~ ⊆ ec~ ⊆ ∆thandle → ⇐]) with
which it interacts, that an exception has occurred. For every
channel e which is used in such a [e~ ⊆ ∆thandle] or similar
statement, there is a corresponding constraint monitor in
another process, say B, which uses the same channel (e.g.
e~ → →exc). If the synchronization actions e~ succeed in both
processes, the exception exc will be raised in B. If, however,
the constraint monitor e~ → →exc is not active in process B at

atAatB
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the time of execution of [e~ ⊆ ∆thandle] in A, the time-out
∆thandle will occur. In such a case, the exception occurrence in
process A did not cause a constraint violation in B. The time-
out ∆thandle prevents A from remaining blocked in e~ when
the corresponding constraint monitor (e.g. e~ → →exc) is not
active in B. The time thandle should be larger than the maxi-
mum computational delay between interaction points (see
Section 4.2), and larger than the maximum amount of time
that a process may need for exception handling in the state-
ment parts of constraint monitors and in exception handlers.
The reason for this is that constraints are not monitored
during that time. Exception handlers and statement parts of
constraint monitors should be simple and not execute syn-
chronization statements which may block. This will ensure
that exception occurrences are handled instantly, and that
the time thandle can be small (infinitely small in the case of
infinitely fast control processes).

For exception handling, the exceptions error and kill are
declared as follows: exception error, kill. These exceptions are
declared globally, so that they are available in all processes.
The exception error is raised due to an error in the process
itself, or in the controlled components. The exception kill is
raised due to an exception in another control process, in order
to prevent incorrect synchronization. If an error is detected,
an error message is sent to the man-machine interface. For
this purpose, all control processes use a different channel
mmiX. These channels that connect the processes to the man-
machine interface process are not shown in the system. In the
following specification, only the elements that have changed
in comparison to the specification without exception handling
are shown.

Reset actions of the control processes after an error are not
specified. It is assumed that the operator resets the controlled
system prior to pushing the different start buttons of the
control processes.

In the exception handler of WSA (see (6.1)), RobotMaster is
notified of the exception in WSA, after which a retry response
is given.

proc WSA
(startA, emgA, reqA, doneA, eRA, eAR : ~void,  mmiA : string)
=

|[  startA~;
 |[ *[body]
 ‡ emgA~ → mmiA!"emergency in WSA"; →error
 ]|

†  [eAR~ ⊆ ∆thandle]; ⇐ (6.1)
]|,

where body =
receiveParts; assemble; reqA~; |[doneA~ ‡ eRA~ → →kill]|. (6.2)

In order to prevent deadlock, the constraint monitor
eRA~ → →kill in WSA (see (6.2)) raises the exception kill if,
while waiting for the acknowledge doneA~ in (6.2), an excep-
tion occurs in RobotMaster (e.g. due to the detection of an
error in process Vacuum or Transport when a product is
picked up). The synchronization reqA~ in (6.2) cannot lead to
deadlock and is therefore not included in the block with the
constraint monitor.

In RobotMaster, two constraint monitors (see (6.4) and (6.5))
are specified, which monitor exception occurrences in the
slaves Vacuum and Transport. In the exception handler, all
processes with which RobotMaster communicates are notified

of the exception occurrence in RobotMaster (see (6.6)). The
state of every process which is notified determines whether an
exception will actually be raised in the process. If, at the time
of execution of the exception handler in (6.6), a constraint
monitor eRX~ → →exc is active in such a process (X equals
either A, B, V or T), success of the synchronization action
eRX~ will cause the exception →exc to be raised.

In order to prevent deadlock, the constraint monitor
eAR~ → →kill in RobotMaster (see (6.7)) raises the exception
kill if, during the execution of pick; doneA~, an exception
occurs in WSA (e.g. due to pressing emergency button emgA).

proc RobotMaster (6.3)
( startR, emgR, reqA, doneA, reqB, doneB, ackV, ackT,

eAR, eBR, eVR, eTR, eRA, eRB, eRV, eRT : ~void,
comV : !vCom,  comT : !tCom,  mmiR : !string ) =

|[  startR~;
 |[ *[body]
 ‡ emgR~ → mmiR!"emergency in robot"; →error
 ⊆ eVR~ → →kill (6.4)
 ⊆ eTR~ → →kill (6.5)
 ]|

†  *[eRA~ ⊆ eRB~ ⊆ eRV~ ⊆ eRT~ ⊆ ∆thandle → ⇐] (6.6)
]|,

where body =
reqA~; |[pick; doneA~ ‡ eAR~ → →kill]|; (6.7)
comT!toB; ackT~;
reqB~; |[place; doneB~ ‡ eBR~ → →kill]|;
comT!toA; ackT~,

and  pick = comT!down; ackT~; comV!on; ackV~;
comT!up; ackT~.

In the process Vacuum, the status of the vacuum in the suc-
tion cup is kept in the variable vacOn. Initially, and after an
exception occurrence, the vacuum is assumed to be off. The
operator must see to it that these assumptions are satisfied.
Alternatively, the assumptions could be tested in the process
Vacuum. In the handler (see (6.8)), the master (RobotMaster)
is notified of an exception occurrence only if the exception
caught is not a kill, because a kill exception occurrence in
Vacuum is caused by an exception occurrence in the master
itself (see the constraint monitor eRV~ → →kill in (6.11)).

proc Vacuum
( comV : ?vCom,  ackV, vac, notvac, eRV, eVR : ~void,

aV : !bool,  mmiV : !string) =
|[  x : vCom; vacOn: bool
|  vacOn := false; *[body]
†  [¬◊kill → [eVR~ ⊆ ∆thandle]]; ⇐ (6.8)
]|,

where body =
|[comV?x ‡ vacOn; notvac~ → vacError]|; (6.9)
|[  [x = on → doVacOn ⊆ x = off → doVacOff];

 |[ackV~ ‡ vacOn; notvac~ → vacError]| (6.10)
‡  eRV~ → →kill (6.11)
]|,

and vacError =
aV!false; vacOn := false; mmiV!"no vacuum"; →error, (6.12)

and doVacOn =
aV!true; vacOn := true;
[vac~ ⊆ ∆0.5 → mmiV!"time-out vacuum on"; →error].
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The constraint monitors vacOn; notvac~ → vacError in (6.9)
and (6.10) monitor the presence of the vacuum in the case of
the vacuum being applied (vacOn = true) and the suction cup
holding a product. If, during transportation of the product
from WSA to WSB, the product is dropped and the vacuum
is no longer present, vacError is executed in (6.9) or (6.10),
resulting in the raising of the exception error in (6.12). This
exception will be signaled to RobotMaster by eVR~ in (6.8).
This will cause the constraint monitor eVR~ → →kill of
RobotMaster in (6.4) to raise the exception kill. The slave
Transport is notified of the exception by eRT~ in (6.6), caus-
ing the constraint monitor eRT~ → →kill in Transport (see
(6.14)) to raise an exception and consequently stop any
movements of the robot arm (for example in handler (6.15)).
The structure of the specification of Transport is similar to
the specification of Vacuum because both processes are
slaves.

proc Transport( … ) =
|[  x : tCom
|  *[body]
†  [¬◊kill → [eTR~ ⊆ ∆thandle]]; ⇐ (6.13)
]|,

where body =
comT?x;
|[  [x = up → doUp ⊆ … ⊆ x = toB → gotoB];

 ackT~
‡  eRT~ → →kill (6.14)
]|,

and gotoB =
|[  aToA!false; aToB!true;

 |[atB~ ⊆ ∆4 → mmi!"time-out going to WSB"; →error]|
†  aToA!false; aToB!false (6.15)
]|.

6.3 Exception handling without con-
straint monitors

In this section the control process RobotMaster (see (6.3)) is
specified without the use of constraint monitors. Prioritized
selective waiting statements are used to monitor the con-
straints. The specification illustrates how the code for normal
operation and the code for exception handling get severely
mixed up when constraint monitors are not used. This is due
to the fact that the constraints need now be specified sepa-
rately for each interaction. In order to save space, only the
first part of body is specified.

proc RobotMaster( … ) =
|[  startR~; *[body]
†  *[eRA~ ⊆eRB~ ⊆ eRV~ ⊆ eRT~ ⊆ ∆thandle → ⇐]
]|,

where body =
[emgR~ → em ⁄ reqA~];
pick;
[emgR~ → em ⊆ eVR~ → →kill ⊆ eAR~ → →kill ⁄ doneA~];
[emgR~ → em ⊆ eVR~ → →kill ⁄ comT!toB];
[emgR~ → em ⊆ eVR~ → →kill ⊆ eTR~ → →kill ⁄ ackT~];
…  ,

and pick =
[emgR~ → em ⊆ eAR~ → →kill ⁄ comT!down];
[emgR~ → em ⊆ eAR~ → →kill ⊆ eTR~ → →kill ⁄ ackT~];

[emgR~ → em ⊆ eAR~ → →kill ⁄ comV!on];
[emgR~ → em ⊆ eAR~ → →kill ⊆ eVR~ → →kill ⁄ ackV~];
[emgR~ → em ⊆ eAR~ → →kill ⊆ eVR~ → →kill ⁄ comT!up];
[emgR~ → em ⊆ eAR~ → →kill ⊆ eVR~ → →kill ⊆ eTR~ → →kill
 ⁄ ackT~],

and em = mmiR!"emergency in robot"; →error.

The constraints which need to be monitored must be re-
specified at each interaction point. Compare this with the
specification of the RobotMaster process in (6.3), where each
constraint monitor needs to be specified only once. In the
latter specification, some constraint monitors such as
eTR~ → →kill (see (6.5)) will be active during the complete
execution of body. In the specification above, it is clear that
this constraint monitor needs to be active only when a prod-
uct is actually being transported by the Transport control
process. The specification of this constraint monitor in one
place (6.5) only, however, simplifies the specification consid-
erably. The constraint monitor can only raise the exception
kill when transportation of a product causes an exception
occurrence to be signalled to RobotMaster in (6.13).

7. Related work
Programming languages such as Real-time Euclid ([10]), and
operating systems such as VAXELN ([11]), and ROSKIT
([12]), support the explicit raising of exceptions in other
processes. The problem with this approach is that it is impos-
sible, and in view of modularity undesirable, to know the
exact state of other processes. Thus, the use of such a mecha-
nism may lead to exceptions being raised in other processes
even though no constraints are actually violated in those
processes. In [13] and [14], mechanisms are proposed in which
the handler for an exception can reside in a different process
to that in which the exception was raised. We consider the
use of these mechanisms to be in conflict with the definition
and spirit of exceptions, because the mechanisms will cause
exceptions to be handled in processes in which there is no
exception occurrence. The mechanisms also introduce unnec-
essary complexity. In [15], [16], and [17], proposals are treated
which deal with exceptions in parallel constructs, such as the
parallel statement in CSP ([4]). These mechanisms deal only
with the termination of a child process with an exception, and
there is no way of propagating exceptions to processes that
are not included in the same parallel construct. The mecha-
nisms mentioned above, and many others, are elaborated in
[18], which also includes a more detailed treatment of the
concepts of error, exception, and related terms. An implemen-
tation in Smalltalk-80 of constraint monitors with a function-
ality close to that described in this paper, is also treated in
[18]. This implementation is based on the modelling tool
described in [19].

8. Conclusions
A proposal for the handling of exceptions in concurrently
executing control processes has been treated. It consists of a
mechanism for the raising and handling of exceptions in a
sequential process, and constraint monitors for dealing with
constraint violations. The syntax and semantics for the
specification of exception handlers is mainly based on princi-
ples well covered in the literature. The syntax and semantics
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chosen are simple and especially suitable for dealing with
exceptions in control systems. Constraints and constraint
monitors have been introduced as new concepts which are
essential for dealing with exceptions in control systems.
Constraint monitors are used to specify the constraints of a
statement in a structured way, leading to programs in which
the code for the normal operation of the program is separated
from the code for exception handling. A constraint monitor
for a statement needs to be specified only once, but the con-
straints will be monitored at all interaction points encoun-
tered during the execution of the statement. If a constraint
violation is detected, an exception is raised. In this way, the
invariants of a process remain valid, finalization obligations
of statements are executed, deadlock in the case of exception
occurrences is prevented, the controlled system is monitored
for constraint violations only if necessary, and exceptions are
not raised in processes in which no constraints have been
violated. Therefore, the use of constraint monitors simplifies
the complex task of robust control system specification.
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