
In Proc. of the 11th. European Simulation Symposium, Erlan-
gen, 1999, pp. 88-92.

HYBRID MODELLING AND SIMULATION OF TIME-DELAY ELEMENTS

D.A. van Beek, J.E. Rooda, and B.J. Trienekens
Department of Mechanical Engineering
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven

The Netherlands
E-mail: d.a.v.beek@tue.nl

ASTRACT

Most general purpose simulation languages do not provide
support for modelling and simulation of delay elements
with variable delay times. In this paper, combined discrete-
event / continuous-time (hybrid) models of time delay el-
ements are treated. An introduction is given to discrete-
event and continuous-time models of delay elements. The
hybrid models are compared to the traditional models us-
ing a step and sine input function. The hybrid models out-
perform the traditional models on accuracy, computation
time, and stability. The most important aspect of the hy-
brid models with a variable delay time is that between two
adjacent sample points, the volume entering the element is
constant.

INTRODUCTION

Whenever energy or material is physically moved in a pro-
cess or plant, there is a time delay associated with the
movement. Examples can be found in chemical plants
where pipes are used to transport liquids between tanks and
reactors. If the time delay is not considerably smaller than
the time scale of the other relevant phenomena, so that it
cannot be ignored, it should be included in the model. The
mathematical formulation of the time delay phenomenon
is the linear advective equation

∂u

∂t
+ v

∂u

∂x
= 0 (1)

The initial profile isu(x, 0) = uip(x), while the boundary
conditionu(0, t) = u0(t) represents the input function for
the time delay element. The first order hyperbolic par-
tial differential equation (PDE) (1) is particularly difficult
to solve numerically, because it transmits discontinuities
without dispersion or dissipation (Carver and Hinds 1978).
Furthermore, it is liable to produce numerical oscillations
(Carver and Hinds 1978; Hu and Shao 1988).

Time delays are often related to transportation of liq-
uids through pipes in process industry plants. In such
cases, only the input-output relations of the pipe are rele-
vant, such as the relation between molar concentrations in
the liquid at the input and output of the pipe. The input-
output relation can be denoted as

uL(t) = u0(t − td) (2)

whereuL = u(x = L, t), L is the length of the pipe, and
td is the time delay. The time delay is constant if the flow

rate is constant. If the flow rate is not constant,td depends
on the flow rate.

Morton and Smith (1989) proposed a simulation algo-
rithm for dealing with time delays in a dynamic process
simulator. The algorithm can deal with constant and vary-
ing time delays, and also with discontinuities. In most sim-
ulation languages suited to dynamical modelling of process
industry plants, time delays cannot be modelled in the form
of Equation (2). The reason for this is that simulation al-
gorithms such as the one described by Morton and Smith
(1989) are usually not implemented. Therefore, the time
delay element must be modelled in a different way. Several
modelling approximations of time-delays are known from
literature. The approximation models are either discrete-
event (DE) models or continuous-time (CT) models. DE
models handle discontinuities well, but are not very accu-
rate. CT models, on the other hand, are accurate, but do
not handle discontinuities very well. This paper proposes
combined DE/CT (hybrid) models, that combine the ad-
vantages of the DE and CT models. The proposed models
are not, however, a straightforward combination of the DE
and CT models known from literature. New modelling
techniques are used that result in short and elegant mod-
els. In the sequel, some DE and CT modelling techniques
known from literature are discussed. Subsequently, the
new hybrid modelling techniques are discussed, preceded
by an introduction to theχ language that is used to specify
the models. Finally, simulation results and conclusions are
presented.

DISCRETE-EVENT MODELS

Discrete-event approximations of delay elements are based
on arrays where past samples are stored. Arrays are also
used in the steady state simulation language ASCEND II
(Kuru 1981), and in the simulation algorithm described by
Morton and Smith (1989). They are used in the follow-
ing way (Coleman 1965; Franks 1972). Consider a delay
element with inputu0 and outputuL. Assume the delay
time td to be fixed. The inputu0 is sampled everytd/n

time-units. The samples are stored in the array of sizen.
Figure 1 gives a graphical representation of the array. The
start location of the array is connected to the end location,
so that a carrousel is obtained. A write and read pointer
point to the current array location. At every sample time
point, the current location is read and assigned to output
uL; subsequently a new sample is taken of inputu0 and

write in read out

Figure 1: Delay element model using an array.

assigned to the current array location. After this, the car-
rousel is turned one position, so that the pointers point to
the next array location. In this way, every new sample will
arrive at the output aftern · td/n = td time-units. Initially,
the array is filled with values representing the initial state
of the delay element.

The algorithm treated above is based on constant time
delays. In such as case, the outputuL of the array based
models will be exact at the sample time points. Between
two sample points, the output can be kept constant or linear
interpolation between two subsequent points in the array
can be used. In the algorithm of Morton and Smith (1989),
multi-point interpolation is used.

Ball (1966) adapted the algorithm described above for
variable time delays. The time-delay element considered
is a pipe with variable flow rateQ. The sample timets
remains constant, but besides inputu0, also flow rateQ is
sampled. The flow rate is used to approximate the liquid
volume that has entered the pipe during the last sample
interval: 1V ≈ Qs · ts. In the array, both the inputu0
and the calculated volume1V are stored. When the sum
of the volumes stored in the list exceeds the volume of
the pipe, an estimation of the output is made. The output
of this model is much less accurate than the output of the
models with a constant time delay, because of the many
approximations that are required.

CONTINUOUS-TIME MODELS

Continuous-time approximations of delay elements are
usually based on the method of lines. The principle of
this method is to discretize all independent variables ex-
cept one, such that the PDEs are converted into a set of
ordinary differential equations. In the case of the linear ad-
vective equation,u is discretized with respect tox. For this
space discretization usually the finite-difference or finite-
element methods are used (Carver and Hinds 1978; Met-
zger 1996). Consider a pipe of length 1, and variablex that
denotes the position along the pipe:x ∈ [0, 1]. Space dis-
cretization implies division of interval[0, 1] into n equal
pieces of 1/n. This leads ton + 1 grid pointsxj along
thex-axis, such thatx0 = 0, x1 = 1

n
, x2 = 2

n
, · · · , xn = 1.

Dependent variableu(x, t) is now approximated byn + 1
variablesuj (t) that are no longer dependent onx. Variables
uj (t) can be regarded as approximations ofu(x, t) along
the grid points, such thatuj (t) approximatesu(x = xj , t).

Experiments by Metzger (1996) indicate no major per-

formance differences between finite difference and finite
element methods. In the sequel the finite difference four-
point upwind biased formula (4UB) is used, since it was
among the best performers in studies by Trienekens (1998),
Metzger (1996), and Metzger (1994):

(
∂u

∂x

)
j
= 2uj+1 + 3uj − 6uj−1 + uj−2

61x
(3)

At the boundaries of the element the two-point upwind
formula (2U) is used:

(
∂u

∂x

)
j
= uj − uj−1

1x
(4)

Substitution of Equations (3,4) into Equation (1) together
with 1x = 1

n
leads to the following set of ODEs (Silebi

and Schiesser 1992):
(

du

dt

)
j

= −nv
(
uj − uj−1

)
, j = 1, n (5)

(
du

dt

)
j

= −nv
6 (2uj+1 + 3uj − 6uj−1 + uj−2),

j = 2, ..., n − 1
(6)

THE HYBRID χ LANGUAGE

The hybrid models are specified in the hybridχ language.
Theχ language has been designed from the start as a hy-
brid language that can be used for specification, verifica-
tion (Kleijn et al. 1998), simulation and real-time control
of discrete-event systems (van de Mortel-Fronczak et al.
1995), continuous-time systems and combined discrete-
event / continuous-time systems (van Beek and Rooda
1998; van Beek et al. 1997). The language is based on
mathematical concepts with well defined semantics (Bos
and Kleijn 1999). The discrete-event part ofχ is based
on Communicating Sequential Processes, the continuous-
time part on differential algebraic equations (DAEs). Pro-
cesses are parametrized and can be grouped into systems;
discrete and continuous channels are used for inter-process
communication and synchronisation. High level data types
are available such as arrays, lists and sets along with many
associated operators.

Theχ simulator is described by Naumoski and Alberts
(1998), and Fábián (1999). It has been successfully applied
to a large number of industrial cases, such as an integrated
circuit manufacturing plant (Rulkens et al. 1998) and a
beer brewery. In the sequel, only a minimal subset of theχ

language is used. The syntax and operational semantics of
the language constructs are explained in an informal way.
Some language constructs are explained in this section,
other constructs are explained when they are first used in
the models. The models are kept as short as possible,
showing only the essentials. This implies that the models
are specified as stand-alone processes. In reality, models
of delay elements have incoming and outgoing channels
so that they can be used in systems. Such models, and
an example case of a biochemical plant are described by
Trienekens (1998).

2

A χ process may consist of a continuous-time part only
(DAEs: differential algebraic equations), a discrete-event
part only, or a combination of both.

proc name(parameter declarations) =
|[variable declarations; initialization
| DAEs | discrete-event statements
]|

All data types and variables are declared as either con-
tinuous using a double colon (e.g.V :: [m3]), or discrete
using a single colon (e.g.d : real). The value of a dis-
crete variable is determined by assignments (e.g.d := 1).
Between two subsequent assignments the variable retains
its value. The value of a continuous variable, on the other
hand, is determined by equations. An assignment to a con-
tinuous variable (e.g. initializationV ::= 0) determines its
value for the current point of time only. Some discrete data
types are predefined like bool (boolean), int (integer) and
real. Variables may be declared with units (e.g.v :: [m/s]).
All variables with units are of type real.

The continuous-time part consists of a set of DAEs
that are separated by commas:DAE1, DAE2, . . . , DAEn.
A time derivative is denoted by a prime character (e.g.x′).

The discrete-event part consists of a sequence of state-
ments. Assignment statements have been treated in the
previous paragraphs.Time passing is denoted by1t ,
wheret is an expression of type real. A process executing
this statement is blocked until the time is increased byt

time-units.Repetition of statement[S] is denoted by∗[S].
By means ofstate event statement∇ r, the discrete-event
part of a process can synchronize with the continuous part
of a process. Execution of∇ r, wherer is a relation in-
volving at least one continuous variable, causes the process
to be blocked until the relation becomes true.

HYBRID MODELS

Constant Time Delay

First a specification is given of a model with the same func-
tionality as the carrousel described in Section ‘Discrete-
Event Models’. Between samples the output remains con-
stant. Parameters of the model are the total delay time
td and the number of samplesn. The input and output
variables of the delay element are represented byui and
uo, respectively. Declarationui, uo :: [−] means that both
variables are continuous, but their units are not specified.
Compare this with declarationV :: [m3], where the units
of V are m3. Declarationus : real∗ declaresusas a list of
reals. The list is used to store the samples.

A list is an ordered collection of elements of the same
type. For example[0, 1, 1, 2] is a list containing the num-
bers 0,1,1, and 2, in that order. Operator++ concatenates
two lists. For example,[0] ++[1, 1] = [0, 1, 1]. Func-
tion hr (head right) returns the right most element of the
list. For example, hr([0, 1, 1, 2]) = 2. Function tr re-
turns the list without the right most element. For example,
tr([0, 1, 1, 2]) = [0, 1, 1]. Using a list instead of an array
leads to a much more elegant specification of the delay
element.

proc ConstDelay(td : real, n : nat) =
|[ui, uo :: [−]
, us : real∗ , ts : real
; ts := td/n

; us := []; ∗[len(us) < n −→ us := [0] ++ us]
| ui = f (τ)

, uo = hr(us)
| ∗[us := [ui] ++ us; 1 ts; us := tr(us)]
]|

First the sample time is initialized (ts := td/n). Subse-
quentlyus is initialized as an empty list (us := []), which
is then filled withn zeros by∗[len(us) < n −→ us :=
[0] ++ us]. This repetition is executed for as long as the
condition len(us) < n is true. After the first bar (|) the
equations are specified. The input function is given by
f . Predefined variableτ represents the current simulation
time. In models that are used as a part of a bigger system,
input variableui would be defined in another process. Its
value would then be made available in the model of the
delay element by means of a continuous channel. Contin-
uous output variableuo is always equal to the last (right
most) element of the listus (uo = hr(us)). The discrete-
event part of the specification consists of an endless loop.
First, a new sample is added to the list (us := [ui] ++ us).
Next, the model time is incremented to the next sample
time point (1ts). During this sample interval, output vari-
ableuo is equal to the right most element of the list. At
the new sample time point, first the last element of the list
is removed (us := tr(us)), so that the before last sample
is moved to the end of the list. Subsequently, the loop
statements are repeated.

Constant Time Delay with Interpolation

The accuracy of the model can be improved considerably
by using linear interpolation of the output between two
samples. This has been done in the following model.

proc ContDelay2(td : real, n : nat) =
|[ui, uo :: [−]
, us : real∗ , ts, d : real
; ts := td/n

; us := []; ∗[len(us) < n −→ us := [0] ++ us]
; uo ::= hr(us); us := tr(us); d := 0
| ui = f (τ)

, u′
o = d

| ∗[d := hr(us)−uo
ts

; us := [ui] ++ us
; 1 ts; us := tr(us)
]

]|
Output equationuo = hr(us) has been replaced by

equationu′
o = d, whered is a discrete variable that is

equal to the derivative of the output between samples. The
output variable is initialized to the last element of the list
(uo := hr(us)). Immediately after that this last element is
removed from the list (us := tr(us)). The value ofd is
set to hr(us)−uo

ts
at the beginning of the repetition. At that

time point, the value of the output variable equalsuo. At

3

the next sample time point, the output variable should be
reach the value of the last sample in the list, which is equal
to hr(us). This change takests time units. Therefore, the
derivative of the output variable should equalhr(us)−uo

ts
.

Variable Time Delay

The key to an accurate, stable and elegant model of a time
delay element is not to keep thesample time constant, but
instead to keep thetransported volume constant in every
sample interval. In this way, the output value of the delay
element model at the sample times is almost exact. The
error in the output values at these sample times depends
only on the accuracy of the DAE or ODE solver used. The
model follows below.

proc VarDelay(Vtot : real, n : nat) =
|[ui, uo, Q, V :: [−]
, us : real∗ , Vs : real
; Vs := Vtot/n

; us := []; ∗[len(us) < n −→ us := [0] ++ us]
; uo ::= hr(us); us := tr(us); V ::= 0
| ui = f (τ)

, Q = g(τ)

, V ′ = Q

, u′
o = hr(us)−uo

(Vs−V)/Q

| ∗[us := [ui] ++ us
; V ::= 0; ∇ V ≥ Vs; us := tr(us)
]

]|
Two additional continuous variables have been intro-

duced:Q andV . The delay element is considered as a pipe
with a constant area. VariableQ represents the flow in the
pipe; variableV represents the volume that enters the pipe
during a sample interval (V ′ = Q). The sample volumeVs
equals the total volume of the pipeVtot divided by the num-
ber of samples in the listn. Flow Q changes according to
functiong (Q = g(τ)). The discrete-event specification is
analogous to that of the modelContDelay2. Discrete vari-
abled is no longer needed, and time passing during the
sample interval is now modelled byV ::= 0; ∇V ≥ Vs
instead of1ts. First the volume is initialized to 0, then
time passes until the volumeV , that has entered into the
pipe, equals the sample volumeVs. This means that aftern
samples, the amount of liquid that has entered into the pipe
equalsVs · n, which in turn equals the total volume of the
pipeVtot. Therefore, the liquid particles that are at the be-
ginning of the pipe arrive at the end of the pipe after exactly
n samples. The output is interpolated in a way analogous
to modelContDelay2. The derivativeu′

o of the output is
approximated as1uo

1t
. At any time point during the sample

interval, the output equalsuo. The value at the end of the
interval should be hr(us). Therefore1uo = hr(us) − uo.
Likewise, the transported volume at any time point during
the sample interval equalsV . Therefore, the remaining
time1t required to transport the sample volumeVs equals
(Vs − V)/Q, so that1uo

1t
= hr(us)−uo

(Vs−V)/Q
. In this equation,

hr(us) andVs remain constant during the sample interval,
butuo, V andQ are functions of time.

SIMULATION RESULTS

The modelsContDelay2, VarDelay, andFD4UBhave been
compared with a step and sine input. TheFD4UBmodel is
a χ model that implements Equations (5,6). The average
absolute error has been determined by integration

e =
∫ t0+td+tm

0

|uo(t) − f (t − td)|
tm

dt

whereuo(t) is the actual output;f (t) is the input (f (t) = 0
for t < 0); td = 10 is the delay time, which is the same for
all models; andtm = td = 10 for the step input, andtm = 24
equals the period of the sine for the sine input. The value
of t0 is 1 for the step input and 0 for the sine input. The
errors for modelsContDelay2 andVarDelaydepend on the
exact value oft0. The error is maximal whent0 coincides
with a sample point, and minimal when it is exactly in the
middle of two adjacent sample points. Results presented
for modelVarDelayhave been limited to constant delay
times, because of the difficulty to produce reliable ana-
lytical reference results for the output with varying delay
times. The solver used is the differential algebraic equa-
tion solver DASSL (Petzold 1983). The current version of
theχ simulator does not yet provide any ODE solvers.

Table 1: Step input comparison.
n e tcomp[s]

ContDelay2 50 0.005 - 0.01 0.9
100 0.0025 - 0.005 1.9

VarDelay 50 0.005 - 0.01 2.6
100 0.0025 - 0.005 4.8

FD4UB 50 0.036 3.7
100 0.021 11.5

Table 2: Sine input comparison.
n e tcomp

ContDelay2 50 0.00014 1.9
100 0.00003 3.7

VarDelay 50 0.00014 2.9
100 0.00003 5.6

FD4UB 50 0.0025 2.8
100 0.00070 7.8

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

ui, uo eui uo

e

Figure 2: ModelContDelay2, step input,n = 50

CONCLUSIONS

Hybrid models of time delay elements have been shown
to outperform traditional models, both on accuracy, com-

4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

eui, uo

e

uoui

Figure 3: ModelFD4UB, step input,n = 50.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002
eui, uo

e

uoui

Figure 4: ModelContDelay2, sine input,n = 50.

putation time, and stability. At the same time, the hybrid
models are short and elegant. Simulations have been done
using theχ simulator with the DASSL differential alge-
braic equation solver. The key to an accurate, stable and
elegant model of a time-delay element with a variable de-
lay time is not to keep thesample time constant, but instead
to keep thetransported volume constant in every sample
interval.

REFERENCES

Ball, S.J. 1966. A Variable Time-Delay Subroutine for Dig-
ital Simulation Programs.Simulation 22, 23–24.

Bos, V. and J.J.T. Kleijn. 1999. Structured Operational Se-
mantics of Chi. Computing Science Reports 99/01, Eind-
hoven University of Technology, Eindhoven.

Carver, B. and H.W. Hinds. 1978. The Method of Lines
and the Advective Equation.Simulation 31, 59–69.

Coleman, T.G. 1965. A Time-Delay ‘Special Element’ for
PACTOLUS.Simulation 5(11), 308.

Fábián, G. 1999.A Language and Simulator for Hybrid
Systems. Ph. D. thesis, Eindhoven University of Technol-
ogy, The Netherlands.

Franks, R.G.E. 1972.Modelling and Simulation in Chem-
ical Engineering. London: Wiley-Interscience.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
ui, uo e

e

Figure 5: ModelFD4UB, sine input,n = 50.

Hu, S.S. and X.M. Shao. 1988. Adaptive Hybridized
Spline Differentiators for Numerical Solution of the Ad-
vective Equation.Computers & Mathematics with Appli-
cations 15, 525–534.

Kleijn, J.J.T.; M.A. Reniers; and J.E. Rooda. 1998. A Pro-
cess Algebra Based Verification of a Production System. In
Proc. of the 2nd IEEE International Conference on Formal
Engineering Methods (ICFEM’98), Brisbane, 90–99.

Kuru, S. 1981. Ph. D. thesis, Carnegie-Mellon University.

Metzger, M. 1994. Modelling and Simulation of Time-
Delay Element via Advective Equation. InProc. Confer-
ence on Modelling and Simulation, 756–759.

Metzger, M. 1996. Comparison of Finite-Difference
and Orthogonal Collocation Methods in Simulations of
Sampled-Data-Controlled Continuous Plants with Time-
Delay. In Proc. 1996 European Simulation Multiconfer-
ence, 118–121.

Morton, W. and G.J. Smith. 1989. Time Delays in Dynamic
Simulation.Computers & Chemical Engineering 13(6),
631–640.

Naumoski, G. and W. Alberts. 1998.A Discrete-Event Sim-
ulator for Systems Engineering. Ph. D. thesis, Eindhoven
University of Technology, The Netherlands.

Petzold, L.R. 1983. A Description of DASSL: A Differen-
tial/Algebraic System Solver.Scientific Computing, 65–
68.

Rulkens, H.J.A.; E.J.J. van Campen; J. van Herk; and
J.E. Rooda. 1998. Batch size optimization of a furnace
and pre-clean area by using dynamic simulations. In
Proc. SEMI/IEEE Advanced Semiconductor Manufactur-
ing Conference, Boston, 439–444.

Silebi, C.A. and W.E. Schiesser. 1992.Dynamic Modelling
of Transport Process Systems. San Diego: Academic Press.

Trienekens, B.J. 1998. Hybrid Modelling of Continuous
Delay Elements. Master’s thesis, Eindhoven University of
Technology, Department of Mechanical Engineering, The
Netherlands.

van Beek, D.A.; S.H.F. Gordijn; and J.E. Rooda. 1997. In-
tegrating Continuous-Time and Discrete-Event Concepts
in Modelling and Simulation of Manufacturing Machines.
Simulation Practice and Theory 5, 653–669.

van Beek, D.A. and J.E. Rooda. 1998. Languages and Ap-
plications in Hybrid Modelling: Positioning of Chi. In
Proc. 9th Symposium on Information Control in Manu-
facturing, Nancy, 77–82.

van de Mortel-Fronczak, J.M.; J.E. Rooda; and N.J.M.
van den Nieuwelaar. 1995. Specification of a Flexible
Manufacturing System Using Concurrent Programming.
Concurrent Engineering: Research and Applications 3(3),
187–194.

5

