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Abstract. A compositional interchange format for hybrid systems is
defined in terms of an interchange automaton, allowing arbitrary dif-
ferential algebraic equations, including fully implicit or switched DAEs,
discrete, continuous and algebraic variables, that can be internal or ex-
ternal, urgency conditions, and operators for parallel composition, action
hiding, variable hiding and urgent actions. Its compositional semantics
is formally defined in terms of a hybrid transition system. This allows
development of transformations to and from other formalisms that can
be proven to preserve essential properties, and it allows a clear separa-
tion between the mathematical meaning of a model and implementation
aspects such as algorithms used for solving differential algebraic equa-
tions.

1 Introduction

Our intention is to establish inter-operability of a wide range of tools by means
of model transformations to and from a compositional interchange format that
is defined in terms of an interchange automaton. The domain of the interchange
automaton format consists of languages and tools from computer science and
from dynamics and control for modeling, simulation, analysis, controller synthe-
sis, and verification in the area of hybrid and timed systems. The purpose of an
interchange format is to avoid the implementation of many bi-lateral translators
between specific formalisms. Instead, the translation from a formalism A to a
formalism B is divided in two steps: first, the model in formalism A is translated
into a representation (model) in the interchange automaton format, then, this
representation is translated into a model in formalism B [1].

Our main requirements for the interchange format are summarized below. A
more detailed discussion of these requirements follows in Sections 2 and 3.

1. It should have a formal and compositional semantics, based on (hybrid)
transition systems, and allow property preserving model transformations.
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2. Its concepts should be based on mathematics, and independent of imple-
mentation aspects such as equation sorting, and numerical equation solving
algorithms.

3. It should support arbitrary differential algebraic equations (DAEs), including
fully implicit equations, higher index systems, algebraic loops, steady state
initialization, switched systems such as piecewise affine systems, and DAEs
with discontinuous right hand sides.

4. It should support a wide range of concepts originating from hybrid automata,
including different kinds of urgency, such as ‘urgency predicates’, ‘deadline
predicates’, ‘triggering guard semantics’, and ‘urgent actions’.

5. It should support parallel composition with synchronization by means of
shared variables and shared actions.

6. It should support hierarchy and modularity to allow the definition of parallel
modules and modules that can contain other modules (hierarchy), and to
allow the definition of variables and actions as being local to a module, or
shared between modules.

Other work on interchange formats for hybrid systems has been carried out
in different projects: in the MoBIES project, the Hybrid System Interchange
Format (HSIF) [2] is defined; in [3] an ‘abstract semantics’ of an interchange
format based on the Metropolis meta model is defined (this work is a continuation
of the COLUMBUS project [4]); and in the HYCON NoE [5], an interchange
format for switched linear systems [6] in the form of piecewise affine systems
(PWAs) is defined.

In HSIF, a network of hybrid automata is used for model representation. The
network behaves as a parallel composition of its automata, without hierarchy or
modules. Variables can be shared or local, and the communication mechanism
is based on broadcasting of boolean ‘signals’, where signals are partitioned in
input and output signals. Each signal is required to be either a global input to
the network or to be modified by exactly one automaton. The semantics is de-
fined only for ‘acyclic dependency graphs’ with respect to the use of signals. The
time dependent behavior is specified by means of ordinary differential equations
(ODEs), together with algebraic relations of the form x = f(x1, . . . , xn), and
invariants. The equation ẋ = 0 is assumed for each shared variable. Circular
dependencies of the algebraic equations, i.e. algebraic loops, are not allowed,
and urgency predicates or urgent actions are not available [2]. The interchange
automaton format defined in this article aims to be more general than HSIF, and
does not incorporate tool limitations, such as restrictions on circular dependen-
cies, or restrictions on shared variables or algebraic loops, in its compositional
formal semantics.

The ‘abstract semantics’ presented in [3], takes implementation considera-
tions into account, such as equation sorting, iterations that may be required for
state-event detection, and iterations for reaching a fixed-point in case of alge-
braic loops. The semantics is defined in terms of functions and algorithms such
as init, markchange, and solve. This is different from the compositional formal
semantics as defined in Section 5, which aims at defining the mathematical mean-
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ing of interchange automata, independently of implementation aspects such as
equation sorting or state-event detection. For example, the semantics defines the
mathematical meaning of a switched system of equations, such as a PWA sys-
tem, but an implementation may choose to implement such switching behavior
with or without state-event detection.

A transformation from the PWA-based interchange format [6] to the inter-
change automaton format will be developed. Based on this transformation, sev-
eral tools, based on among others PWA, HYSDEL, MLD (see [7] for an overview
relating these languages) can then be connected to the interchange automaton
format.

The remainder of this article is organized as follows: Section 2 discusses
the importance of a compositional formal semantics, Section 3 discusses the
concepts present in the interchange automaton format, Sections 4 and 5 define
the syntax and semantics of interchange automata, respectively, and Section 6
presents concluding remarks.

2 Importance of a Compositional Formal Semantics

To use the interchange automaton format for verification purposes, translations
from models to the interchange format, and vice versa, should preserve essential
properties. I.e., verification results obtained for a derived model should also be
valid for the original model specified in another language.

The different languages may have different features and semantics, complicat-
ing translations between them. To keep the translations between the interchange
automaton format and the other languages manageable, in terms of complexity,
it is important that transformations between parts of specifications within the
interchange format itself can be defined. To allow such transformations, it is es-
sential that the semantics of the interchange automaton format is compositional.
I.e., that the notion of equivalence is a congruence for all operators of the in-
terchange automaton format, see [8]. Parts of a model can then be replaced by
equivalent parts without changing the meaning of the model.

Consider, for instance, a transformation of a model in a simulation language,
such as Modelica [9] or EcosimPro [10], to a verification tool, such as PHAVer
[17] or HyTech [16]. The simulation languages use a triggering guard semantics
(see Section 3.4), whereas the verification tools use invariants to force switching
to a different location. Defining direct translations from the simulation languages
to the verification tools and reasoning about the correctness of the translations
would be difficult, since the simulation languages do not have a formal semantics
and the urgent guards in two languages would need to be transformed into
invariants in combination with non-urgent guards in two other languages. By
using the compositional interchange format as an intermediate, the complicated
direct translations can be replaced by more straightforward translations from the
simulation languages to the interchange format, using urgent guards, and from
the interchange format to the verification tools, using invariants; in combination
with a transformation in the interchange format from urgent guards to invariants.
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3 Concepts in the Interchange Automaton Format

3.1 Differential Algebraic Equations

Modeling of physical systems, such as mechanical or chemical systems frequently
leads to DAEs. Algebraic constraints can also be the result of stateless compo-
nents such as proportional controllers. DAEs can be modeled and simulated
using languages such as Modelica and EcosimPro. DAEs can be specified in
the invariants of an interchange automaton, since such invariants are predicates
over all variables, including the dotted variables. Flow clauses are supported
for reasons of compatibility with existing hybrid automata. The reason for not
enforcing a separation between invariants (over non-dotted variables) and flow
clauses (over dotted variables), as in existing hybrid automata, is that such a
separation is absent in the mathematical theory of dynamical systems, includ-
ing control theory. In many cases, fully implicit DAEs, such as f(ẋ,x,y, t) = 0,
cannot even be rewritten to a form where the algebraic constraints and the dif-
ferential constraints are separated, such as the semi-explicit form ẋ = g(x,y, t),
h(x,y, t) = 0, where x and y are the continuous and algebraic variables, re-
spectively. The generalized invariant allows us to consider the four expressions
x = 1∧ x = 2, ẋ = 1∧ ẋ = 2, ẋ = y ∧ ẋ = 2y ∧ y = 1 and ‘false’ to be equivalent
(bisimilar): no behavior is possible.

The initialization clause of the interchange automaton is also defined as a
predicate over all variables, including the dotted variables. This allows more
general initializations than usually allowed in hybrid automata. In particular,
steady state initialization, as available in Modelica and EcosimPro, is supported.
E.g. by defining ẋ = 0 as initialization predicate for a location with invariant
f(ẋ,x,y, t) = 0, the initial state is defined as the ‘steady state’, that is the
solution of the set of DAEs such that all derivatives are zero: f(0,x,y, t) = 0.

3.2 Discrete, Continuous and Algebraic Variables

The interchange automaton defines three classes of variables: the discrete and
continuous variables, and in addition the algebraic variables. The differences are
as follows: Continuous variables are the only variables for which dotted variables
(derivatives) can be used in models. The values of discrete variables remain
constant when model time progresses, the values of continuous variables may
change according to a continuous function of time when model time progresses,
and the values of algebraic variables may change according to a discontinuous
function of time. Finally, there is a difference between the different classes of
variables with respect to how the resulting values of the variables in a transition
relate to the starting values of the variables in the next transition. The resulting
value of a discrete or continuous variable in a transition always equals its starting
value in the next transition. For algebraic variables there is no such relation,
because algebraic variables are not part of the state.

The state of an interchange automaton consists of, among others, the inter-
change automaton itself, and a valuation of the discrete and continuous variables
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(see Section 5 for a more precise definition of the state). The values of the dotted
variables and the algebraic variables are not contained in the state. The reason
for this is that the state of an interchange automaton represents all informa-
tion needed to determine future behavior, i.e., the state of a system makes the
system’s history irrelevant. The dotted and algebraic variables are not needed
in the state, because their values are determined completely by the interchange
automaton: in particular by the initial conditions, the flow conditions, the in-
variants and the jump predicates as defined in Section 4.

In most languages that allow (implicit) DAEs, such as Modelica [9], Ecosim-
Pro [10], and Simulink [11], the distinction between continuous and algebraic
variables is implicitly made by considering all continuous variables that do not
occur differentiated as algebraic.

3.3 Automata Related Concepts

Many different hybrid automaton definitions exist. Some definitions require so-
lutions for the continuous variables to be differentiable functions, e.g. in [12, 13].
Other definitions allow the more general case of piecewise differentiable or piece-
wise continuous functions, e.g. in [14]. Such restrictions can be realized in the
interchange automaton format by means of the parameters F and G as defined
in Section 5. In [15], for each variable a ‘dynamic type’ can be defined. However,
since we did not find such expressivity in tools, the interchange automaton for-
mat allows the definition of the dynamic type for the algebraic and continuous
variable classes, not for each individual variable.

With respect to the meaning of jump predicates, that define the behavior
of the variables in action transitions, differences also occur: in [12] the variables
can in principle perform arbitrary jumps unless restricted by the jump predicate,
in [16], variables in principle remain unchanged unless changes are enforced by
the jump predicate by means of primed variables. The first behavior is obtained
by an interchange automaton that defines the set of jumping variables W (see
Sections 4 and 5.1) at each edge to be equal to the set of all variables. The second
kind of behavior is obtained by defining the set W as the union of all primed
variables of the jump predicate. The specification of a set of jumping variables
and a jump predicate for each edge of an interchange automaton is based on
[13].

The interchange automaton format is expressive enough to deal with ver-
ification tools such as PHAVer [17] and HyTech [16]. The behavior of the
algebraic variables from the interchange automaton is related to the external
variables from the semantical hybrid I/O automaton defined in [15]. In this I/O
automaton, the external variables are also not part of the state, and they can
have a dynamic type that allows discontinuous trajectories. The state is defined
by the values of the internal variables, and discrete transitions (action transi-
tions) are defined only on internal variables. The interchange automaton format
can express this as a special case, since the different classes of variables, action
transitions, and hiding/abstraction are orthogonal concepts in the interchange
automaton format.
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The basic elements of hierarchy and modularity that are supported by the
interchange format are parallel composition, and hiding of variables and actions.
Interchange automata can be grouped by means of parallel composition, and
variables and/or actions that are meant to be local to that group can be hidden
from the environment of the group. The concrete interchange format, that will be
developed, will define modularity in terms of the basis elements of the abstract
format.

3.4 Urgency

The concept of urgency allows the passing of time up to a certain point. There
are essentially two different kinds of urgency:

1. Urgency that is defined for an atomic automaton by means of one or more
predicates. Such predicates can be associated to a location, or to outgoing
edges of the location.

2. Urgency that is defined as an operation on a composition of one or more
automata. Such an operation defines a set of actions as urgent for the com-
position. The operation allows the passing of time up to the point when one
or more of the urgent actions can be executed.

The first kind of urgency is defined in many different forms. The tcp (time
can progress) predicate [18], is a predicate over the variables of the automaton
and time. The predicate is associated to a location. It allows passing of time in a
location for as long as the predicate is true. Related to the tcp predicate is the
stopping condition [19], which is a predicate on the variables of the automaton,
also associated to a location, and which allows passing of time in a location for
as long as the stopping condition is false, or in other words, until the time-point
when the stopping condition is true. Deadline predicates [20] and urgency predi-
cates [19] are associated to the edges of an automaton. Deadline predicates allow
passing of time in a location until the time-point that one or more deadline pred-
icates of the outgoing edges of the location become true. Whenever a deadline
predicate of an edge becomes true, the guard associated to that edge must also
be true: the deadline predicate must imply the guard. Urgency predicates are
similar to deadline predicates; the only difference is that they do not have the
restriction that the urgency predicate should imply the guard. Urgency predi-
cates allow passing of time in a location until the point of time that for one or
more of the outgoing edges, the guard and the urgency predicate are both true.

Restricting a tcp predicate as a predicate over the variables of an automaton
makes it equal to the negation of a stopping condition. Deadline predicates and
urgency predicates are less expressive. They can both be expressed in terms of
stopping conditions, see [19], or as tcp predicates. E.g. the stopping condition
of a location corresponds to the disjunction of all deadline predicates of the
outgoing edges of the location. Note that a flow condition which is false in
a hybrid automaton is equivalent to a stopping condition that is true, or a
tcp predicate that is false. The interchange automaton format adopts stopping
conditions, which we refer to as urgency conditions.
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In simulation languages, such as Modelica, EcosimPro, and HyVisual, usually
a triggering or urgent guard semantics is used, meaning that the passing of time
in a location is allowed until the time-point that any of the guards of the outgoing
edges becomes true. This is equivalent to a stopping condition associated to the
location that is the disjunction of the guards of all outgoing edges.

The second kind of urgency, as for example defined in [21] and [22], is often
available with restrictions only. E.g. in HyTech, edges can be defined as urgent.
The composition of urgent actions is required to be well-formed: ‘whenever two
components synchronize on a label, if one transition is urgent then the other must
either be urgent, or have a jump condition expressible as a guarded command
with its guard being either the predicate true or the predicate false’ [16]. A
second restriction is that ‘if there exists an urgent transition from a location v
to a location v′, then for all valuations satisfying the invariant of v, an urgent
transition to v′ should exist’.

The interchange automaton format defines the second kind of urgency by
means of the urgent action operator. Note that defining this kind of urgency by
means of labeling certain edges or actions as urgent may lead to bisimulation
not being a congruence for parallel composition, as described in [23]. Another
example is the ASAP flag that can be attached to an edge in HyTech. In
such cases, replacing a part of a specification by another part with the same
behavior may lead to different behavior of the complete system. Straightforward
translations of such languages to and from the interchange format is in principle
possible if each action (or edge with a certain action) is either always urgent
or never urgent in a model. If the same action (or edge with a certain action)
occurs both as urgent and not urgent, it may be necessary to eliminate parallel
composition, as for example described in [8], before translation to the interchange
format is possible.

4 Syntax of Interchange Automata

Notation 1 The following notations are defined:

– A set X of variables and a set of action labels L, which does not include the
predefined non-synchronizing action τ , are assumed. The set Lτ denotes the
set L ∪ {τ}.

– For a set of variables S ⊆ X , Ṡ = {ẋ | x ∈ S} denotes the set of dotted
variables.

– For a set of variables S ⊆ X , Pred(S) denotes the set of all predicates over
variables from S.

– f : A 7→ B and g : A → B define a partial function f and a total function
g, both with domain A and range B.

Definition 1 (Atomic Interchange Automaton). An atomic interchange
automaton is a tuple (X, Xi, dtype, V, v0, init, flow, inv, urgent, L, E) where

– X ⊆ X is a finite set of variables, Xi ⊆ X is the set of internal variables,
and Xe = X \Xi is the set of external variables.
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– dtype : X → {disc, cont, alg} is a function that associates to each variable a
dynamic type: discrete, continuous or algebraic. The sets Xdisc, Xcont, Xalg

are defined as Xt = {x ∈ X | dtype(x) = t} for t ∈ {disc, cont, alg}, and
Xstate = Xdisc ∪Xcont is the set of state variables.

– V is a finite non-empty set of vertices, called locations, and v0 ∈ V is the
initial location.

– init ∈ Pred(X̃) is the initial condition. For Y ⊆ X, Ỹ = Y ∪ {ẏ | y ∈
Y ∩Xcont} is the extension of Y with the dotted versions of the continuous
variables in Y .

– flow, inv,urgent : V → Pred(X̃), are functions that each associate to each
location v ∈ V a predicate describing the flow condition, the invariant, and
the urgency condition, respectively.

– L ⊆ L is a finite set of action labels.
– E = V × Pred(X̃) × (L ∪ {τ}) × (P(X̃) × Pred(X̃ ∪ X̃−)) × V is a finite

set of edges, such that for each element (v, g, `, (W, r), v′) ∈ E, v and v′ are
the source and target locations, respectively, g is the guard, ` is the action
label, W ⊆ X̃ is a set of jumping variables (the value of which may change
as a result of an action transition), and r is the jump predicate, also called
reset map. For any Y ⊆ X̃, Y − = {y− | y ∈ Y } denotes the set of minus
superscripted variables that represent the values of variables before an action
transition.

Note that the dynamic type of a variable gives information about its time
dependent behavior. E.g. the value of a discrete variable remains constant when
time passes, whereas the value of a continuous variable changes as a continuous
function of time. The static type, such as real, integer or boolean, mainly gives
information about the domain in which the variable takes values.

The interchange automaton format consists of automata, and operators for
parallel composition, for hiding of action labels and variables, and for the defi-
nition of urgent actions. The automata and operators can be freely combined:

Definition 2 (Interchange automaton). The set of interchange automata A
is defined by the following grammar for the interchange automata α ∈ A:

α ::= αatom atomic interchange automaton
| α ‖ α parallel composition
| hideact(Lh, α) action hiding operator
| hidevar(Xh, α, σh) variable hiding operator
| urgent(Lu, α) urgent action operator,

where

– αatom denotes an arbitrary atomic interchange automaton;
– Lh ⊆ L denotes a set of actions to hide;
– Xh ⊆ X denotes a set of variables to hide and σh : Xh 7→ Λ denotes a

(partial) valuation for the hidden state variables of interchange automaton
α;

– Lu ⊆ L denotes a set of urgent actions.
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In the next sections, two auxiliary functions on interchange automata are
used. These are defined below. The functions vare,st and act extract the sets of
external state variables and external (non-hidden) action labels1, respectively,
from an interchange automaton:

Definition 3. For αa = (X, Xi,dtype, V, v, init,flow, inv,urgent, L,E), and α,
α1, α2 ∈ A we define the functions vare,st : A → P(X ) and act : A → P(L) as
follows:

vare,st(αa) = Xstate ∩Xe

vare,st(α1 ‖ α2) = vare,st(α1) ∪ vare,st(α2)
vare,st(hideact(Lh, α)) = vare,st(α)
vare,st(hidevar(Xh, α, σh)) = vare,st(α) \Xh

vare,st(urgent(Lu, α)) = vare,st(α)

act(αa) = L
act(α1 ‖ α2) = act(α1) ∪ act(α2)
act(hideact(Lh, α)) = act(α) \ Lh

act(hidevar(Xh, α, σh)) = act(α)
act(urgent(Lu, α)) = act(α)

5 Semantics of Interchange Automata

The formal semantics associates to each interchange automaton an action tran-
sition relation, a time transition relation, and a consistency predicate on states.
A different way of looking at such a semantics is as a labeled transition system
with two types of transitions and a predicate. The states S of the labeled tran-
sition system associated to an interchange automaton consist of an interchange
automaton, a valuation of the external state variables of that automaton, and
a set of jumping external state variables: i.e., S = A × Val × P(X ), where
Val = X ∪ Ẋ 7→ Λ is the set of all partial mappings from X ∪ Ẋ to the set of
values Λ. The set of jumping variables J is defined by other automata executing
in the environment of (in parallel to) automaton α. The valuation σ of a state
of a transition system defines values for precisely the externally visible state
variables, i.e., dom(σ) = vare,st(α) for all (α, σ, J) ∈ S.

The intuition of an action transition (α, σ, J)
ξ,`,W,ξ′

−−−−−→ (α′, σ′, J) is that the
state (α, σ, J) executes a discrete action (with action label) ` with visible valu-
ations ξ, ξ′, before and after execution of the action, respectively, and thereby
transforms into the state (α′, σ′, J), where σ′ denotes the accompanying valu-
ation of the automaton α′, after the discrete action ` is executed. The set W
represents the external state variables that are allowed to change (jump) in this
action transition. They need to be visible for synchronization in a parallel com-
position of interchange automata.

The intuition of a time transition (α, σ, J)
t,ρ7→ (α′, σ′, J) is that model time

passes for t time units, and the valuation at each time-point s ∈ [0, t] is given by
ρ(s) for the externally visible variables. At the end-point t, the resulting state
is (α′, σ′, J).

The intuition of the consistency predicate (α, σ, J)
ξ
; is that the interchange

automaton α is consistent with extended valuation ξ, which means that the
invariants of all active locations of α are satisfied in ξ.
1 This does not mean that these actions are actually used. It is allowed to specify the

set of actions much broader than the actions that appear on transitions.
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Notation 2 In this section, some notations and operators are used. These are
defined as follows:

– � is the restriction operator on functions. If f is a function, and S is a
set, f � S denotes the restriction of f to S, that is, the function g with
dom(g) = dom(f) ∩ S, such that g(c) = f(c) for each c ∈ dom(g).

– ↓ is the projection operator on functions, which is used here on trajectories.
For ρ : T 7→ (Y → Λ), S ⊆ Y and x ∈ Y , ρ ↓ S denotes the function
ρ′ : T 7→ (S → Λ) such that ρ′(t) = ρ(t) � S for each t ∈ T ; and ρ ↓ x
denotes the function f : T 7→ Λ such that f(t) = ρ(t)(x) for each t ∈ dom(ρ).

– For atomic interchange automaton αatom given by (X, Xi, dtype, V , v,
init, flow, inv, urgent, L, E), αatom[v′, init′/v, init] denotes the atomic in-
terchange automaton obtained from atomic interchange automaton αatom by
replacing v by v′ and init by init′, and αatom[v′/v] = αatom[v′, init/v, init].

5.1 Semantics of Atomic Interchange Automata

Definition 4 (Action transitions). Consider an atomic interchange automa-
ton α = (X, Xi, dtype, V, v, init, flow, inv, urgent, L, E). The action transition
relation −→ ⊆ S× (Val ×Lτ ×P(X )×Val)×S is for (α, σ, J), (α′, σ′, J) ∈ S,

ξe, ξ
′
e ∈ Val, ` ∈ Lτ , and We ⊆ X , defined as follows: (α, σ, J)

ξe,`,We,ξ′
e−−−−−−→

(α′, σ′, J), if and only if there exist an edge (v, g, `, (W, r), v′) ∈ E and ξ, ξ′ ∈ Val
with dom(ξ) = dom(ξ′) = X̃ such that

– ξ � X̃e = ξe and ξ′ � X̃e = ξ′e;
– ξe � Xstate = σ and ξ′e � Xstate = σ′;
– ξ |= init and ξ |= g;
– ξ |= inv(v) and ξ′ |= inv(v′);
– ξ′ ∪ ξ− |= r;
– ξ � Xnonjmp = ξ′ � Xnonjmp, where Xnonjmp = Xstate \ (W ∪ (J ∩Xe));
– We = W ∩Xstate ∩Xe;

– α′ = α[v′, init′/v, init], init′ =

( ∧
x∈Xstate∩Xi

x = cx

)
, and cx ∈ Λ is given by

cx = ξ′(x).

Here, val |= pred , where val is a valuation and pred a predicate, means
that pred is satisfied when all variables occurring in it are substituted by their
values as defined in val . Minus superscripted variables, such as x−, occurring in
r are evaluated in ξ−, which is defined as dom(ξ−) = {x− | x ∈ dom(ξ)}, and
ξ−(x−) = ξ(x). The ‘non-jumping’ variables in the set Xnonjmp = Xstate \ (W ∪
(J ∩Xe)) are the variables the values of which are not allowed to change in an
action transition. These variables are the discrete and continuous variables apart
from two sets of variables: the variables from set W and the externally visible
variables from set J (J ∩ Xe). The jumping variables in set J are the result
of changes in external variables of synchronizing automata, as defined in the
semantics of parallel composition in [8]. The updated initial condition init′ acts
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as a local valuation which ensures that for each local state variable x, its starting
value for the next transition equals its resulting value (here: ξ′(x), in Definition 5:
ρ(t)(x)) for the current transition. Note that we do not combine the valuation of
the internal variables with the valuation of the external variables in σ. Having
the valuations of the local variables in σ would lead to restrictions on the parallel
composition of two automata, namely that the sets of internal variables of two
automata in a parallel composition would need to be disjoint. Otherwise, local
variables with the same names in parallel automata would become shared. See
for example [15], where the local variables and local actions of automata in a
parallel composition are required to be disjoint.

Definition 5 (Time transitions). Consider an atomic interchange automaton
α = (X, Xi, dtype, V , v, init, flow, inv, urgent, L, E). The time transition
relation 7−→ ⊆ S× (T × (T 7→ Val))×S is for (α, σ, J), (α′, σ′, J) ∈ S, t ∈ T ,
and ρe : [0, t] → Val, defined as follows: (α, σ, J)

t,ρe7→ (α′, σ′, J), if and only if
there exists a ρ : [0, t] → Val with dom(ρ(s)) = X̃ for all s ∈ [0, t] such that

– ρ ↓ X̃e = ρe;
– ρe(0) � Xstate = σ and ρe(t) � Xstate = σ′;
– ρ(0) |= init;
– ρ ↓ x is a constant function for all x ∈ Xdisc;
– (ρ ↓ x) ∈ F for all x ∈ Xalg;
– ρ ↓ ẋ is an integrable function in the Lebesgue sense for all x ∈ Xcont;
– ρ(s) |= flow(v) and ρ(s) |= inv(v) for all s ∈ [0, t];

– (ρ ↓ x)(s) = (ρ ↓ x)(0) +
s∫
0

(ρ ↓ ẋ)(s′)ds′ for all x ∈ Xcont and s ∈ [0, t];

– (ρ ↓ x, ρ ↓ ẋ) ∈ G for all x ∈ Xcont;
– ρ(s) |= ¬urgent(v) for all s ∈ {0} ∪ [0, t);

– α′ = α[init′/init], init′ =

( ∧
x∈Xstate∩Xi

x = cx

)
, and cx ∈ Λ is given by

cx = ρ(t)(x).

Item (ρ ↓ x) ∈ F for all x ∈ Xalg, requires the trajectories of the algebraic
variables to be functions of type F . This set of functions is a global parameter
of the solution concept of an interchange automaton specification.

The relation between the trajectory of a continuous variable x and the tra-
jectory of its ‘derivative’ ẋ is given by the Caratheodory solution concept [24]:
(ρ ↓ x)(s) = (ρ ↓ x)(0)+

∫ s

0
(ρ ↓ ẋ)(s′)ds′. This integral relation can hold only for

those continuous variables for which ρ ↓ x is an absolutely continuous function,
but it does allow a non-smooth trajectory for a continuous variable in the case
that the trajectory of its ‘derivative’ ρ ↓ ẋ is non-smooth or even discontinuous,
as in, for example, in the solution of the invariant ẏ = step(t−1) ∧ ṫ = 1, where
t and y are continuous variable with initial value of 0, and step(x) equals 0 for
x ≤ 0 and 1 for x > 0.

In hybrid automata, the solution concept usually defines the function ρ ↓ ẋ
to be the derivative function of ρ ↓ x for continuous variables x ∈ Xcont. This
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can be realized for the interchange automaton format semantics by restricting
the set G, which is used in the requirement (ρ ↓ x, ρ ↓ ẋ) ∈ G for all x ∈ Xcont,
as G = {(f, f ′) | f is differentiable, and f ′ is the derivative function of f}. In
this way, the semantics of the interchange automaton format corresponds to the
usual semantics of hybrid automata.

Definition 6 (Consistency predicates). Consider an atomic interchange au-
tomaton α = (X, Xi, dtype, V, v, init, flow, inv, urgent, L, E). The consistency
predicate ; ⊆ S × Val is for (α, σ, J) ∈ S and ξe ∈ Val, defined as follows:

(α, σ, J)
ξe
;, if and only if there exists a valuation ξ ∈ Val with dom(ξ) = X̃

such that ξ � X̃e = ξe, ξe � Xstate = σ, ξ |= init, and ξ |= inv(v).

5.2 Semantics of the Operators

The informal semantics of the operators is defined below. The formal semantics
of the operators is defined in a structured operational semantics in [8].

Parallel composition The most common operator for composing hybrid au-
tomata is parallel composition. There are no compatibility requirements for the
parallel composition of interchange automata: any pair of interchange automata
can be composed by the parallel composition operator. The parallel composition
operator synchronizes on all external actions that the arguments share and al-
lows interleaving of any other actions (under the condition that they maintain
the consistency of the other automaton). Time transitions must be synchronized,
and consistency is established only if both automata agree on it. The external
state variables that are shared by the argument automata need to have the same
values (all the time).

Hiding The action hiding operator applied to an automaton, hideact(Lh, α),
hides (abstracts from) the actions from set Lh by replacing them by the internal
action τ . This only affects the action behavior of α; its delay behavior and
consistency remain unchanged.

The variable hiding operator applied to an automaton, hidevar(Xh, α, σh),
hides the variables from set Xh by removing information about them from the
action and time transitions of α. The values of the hidden state variables are
stored in valuation σh.

Urgent action operator The urgent action operator applied to an automaton,
urgent(Lu, α), gives actions from the set Lu priority over time passing. The action
behavior and consistency of α are not affected by the urgent action operator.
Time transitions are allowed only if at the current state, and at each intermediate
state while delaying, no actions from set Lu are possible.
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6 Concluding Remarks

The proposed interchange automaton format integrates formalisms rooted in
computer science with those rooted in dynamics and control. It is indeed com-
positional, since bisimilarity is proved to be a congruence for all operators of
the interchange format in [8]. Future work entails, among others, adding the
notion of input/output variables and input/output actions, adding channels as
communication mechanism between interchange automata in a parallel compo-
sition, adding additional operators, such as sequential composition, and possibly
extending the interchange format with stochastic model primitives. The devel-
opment of translations and simulator implementations will be done by different
partners in Work Package 3 of the HYCON NoE [5]. The translations that are
to be developed should also specify incompatibilities, if present, or subsets for
which property preserving translations are possible.

The atomic interchange automata as introduced syntactically in Definition 1
and for which the semantics has been introduced in Section 5 are very expres-
sive. For any application of an action or variable hiding operator on an atomic
interchange automaton, it is possible to obtain an equivalent atomic interchange
automaton. Also, the parallel composition of any two atomic interchange au-
tomata for which the shared variables have compatible types can be replaced
by an equivalent atomic interchange automaton. The only operator that can-
not be eliminated in all relevant cases is the urgent action operator. Further
substantiation of these claims and ideas can be found in [8].
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