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Abstract

A flexible decentralized and hierarchical architecture is presented to reduce computational effort in designing

optimal nonblocking supervisors for discrete-event systems (DES). We organize a DES into modular subsystems that

embody internal interacting dependencies. Verification of, and coordination among modular subsystems are achieved

through their model abstractions. Sufficient conditions are presented to guarantee that coordinators and modular

supervisors result in maximally permissive and nonblocking control. A medium-sized example demonstrates the

computational effectiveness of our approach.

Index Terms

Discrete-event systems, decentralized control, hierarchical control, model abstraction, observer.

I. I NTRODUCTION

A fundamental obstruction to the development ofsupervisory control theory(SCT) of discrete-event systems

(DES) [1], [33] is the computational complexity of synthesizing maximally permissive and nonblocking supervisors.

Indeed, the nonblocking supervisory control problem for DES is NP-hard [7]. In current algorithms, the space (and

time) required are exponential in the number of plant components and control specifications included in the DES

model. Researchers are therefore seeking effective control methods for various subclasses of discrete-event systems

that enjoy special structure. Such structure will admitmodularity[2], [13], [20], [21], [27] andmodel abstraction[8],

[11], [12], [30] to circumvent computing global dynamic models. This paper presents a control architecture that

flexibly integrates decentralized and hierarchical control to mitigate the computational complexity.

An ideal structure allows a system to be divided into mutually nonconflicting modules; for instance, modules that

share no joint events. To identify more general conditions that guarantee mutually nonconflicting modules, [10],

[13], [19], [27] introduce various sufficient conditions toensure that the conjunction of modular or decentralized

supervisors is equivalent to the monolithic supervisor. These conditions, however, may fail to hold for many realistic

discrete-event systems. In this paper we seek alternative decentralized control methods based on weaker conditions.

As is well known, the exponential complexity of supervisor design arises from synchronizing subsystems into a

global system model. To avoid this, Leducet al. [11], [12] partition systems intomasterandslavesubsystems which
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need not be synchronized for design purposes. Instead, master subsystems call for services from slave subsystems

solely throughinterfaces, which pass service requests from masters to slaves, and confirmation of services performed

from slaves to masters. As long as master and slave subsystems satisfy certain “level-wise consistency” conditions

with respect to their interfaces, the original system is provably nonblocking under decentralized control.

The success of the interface-based approach is due to model abstraction and information hiding. In SCT, model

abstraction of a DES is achieved by acausal reportermap [30], [32], [33], which reports only events related to

external control specifications and relevant plant components. The interface models designed intuitively in [11],

[12] turn out to be model abstractions obtained formally by reporting only the start and finish events of subsystem

activity. In this paper we generalize the interface-based approach as a formal method.

To this end, we substitute model abstractions for the original subsystems. If two subsystems share only a small

number of common events, their abstractions tend to be small, and either verifying the nonconflicting property (if

it holds) or designing acoordinator to achieve it, may require only modest effort. Loosely stated, a coordinator is

a decentralized supervisor that does not enforce any given control specification but only resolves conflict among

other decentralized supervisors. Crucial to successful model abstraction is that the reporter map be as coarse as

possible subject to preserving the information needed for reliable representation of the nonblocking property. The

most effective model abstraction operator in SCT is the causal reporter map having theobserverproperty [28],

[30]–[32].

We note that, withstate treestructures [15] andbinary decision diagram(BDD) encoding of the constituent

DES, systems with state sizes beyond1020 states have been treated. This suggests that the interface architecture

combined with BDDs could be especially efficient [23].

In this paper a DES is assumed to consist of a network of simpleplant components subject to a conjunction of

modular control specifications. Theshufflesystem structure defined in [5] is an instance. The structureassumed

in this paper is, however, more general, inasmuch as plant component alphabets need not be pairwise disjoint and

control specifications are not restricted tobuffersor serversas in [5].

Given a DES control problem with networked structure, our architectural approach to supervisory control design

is the following.

Step 1. Obtain decentralized supervisors for individual specifications using the method introduced in Section III.

Because a specification often imposes restrictions involving only a subset of the alphabet of the DES, the decentral-

ized supervisor for a specification can be synthesized from its “local” plant [2], usually the synchronous product of

plant components that share joint events with the specification. Such a supervisor can often be found by inspection.

Step 2. Partition the plant components and decentralized supervisors into modular subsystems according to

their interaction dependencies.Control-flow decomposition[5] is an effective method for selecting subsystems

appropriately. If each subsystem contains only a few plant components and decentralized supervisors, or admits

simple control logic, we can find its maximally permissive and nonblocking control with only modest computation

or by qualitative reasoning [5]. The main challenge is to treat the interactions among subsystems.

Step 3. Design the model abstraction of each subsystem usingnatural observers, whose properties are explained
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in Section II. Abstraction introduces hierarchy into system structure, as it reports only the events shared with other

subsystems and conceals the rest. The fewer the reported events, the greater state reduction will be achieved.

Step 4. Organize these model abstractions into groups according to their interconnections. In simple cases, all

the model abstractions will belong to just one group. For each group, check whether these model abstractions

are nonconflicting; if they are not, design a coordinator to resolve conflict by the method in Proposition 7. In the

pleasant circumstance that the system is aproductsystem with pairwise disjoint alphabets, the method in Section IV

is applicable.

Step 5. Repeat Steps 3 and 4 by regarding the model abstractions as higher-level plant components and the

groups of model abstractions as subsystems according to Step 2, until there is only one group in Step 4. The end

result will be a hierarchy of decentralized supervisors andcoordinators. The paper presents conditions sufficient

to guarantee that these decentralized supervisors and coordinators provide maximally permissive and nonblocking

supervisory control equivalent to the monolithic controller.

Section V estimates the computational complexity of the proposed approach and discusses how to apply the latter

effectively. Section VI demonstrates its efficiency applied to a well-known example. The latter suggests that we can

obtain intelligible decentralized supervisors with minimal computational effort by supplementing the architectural

approach with control-flow decomposition [5].

Our approach exploits a (more-or-less universal) architecture also utilized in [19]–[21], with the difference that

we do not requirea priori that the modular subsystems be nonconflicting. In fact, coordinating these modules to

eliminate blocking is in our view the main challenge and is our primary objective.

Recently Hill and Tilbury [8] have proposed an incremental hierarchical computational approach, which uses

control architecture and model abstraction similar to thispaper and its precursor [4]. Their approach does not,

however, allow subsystems at the same level to share events.The result is a slender hierarchy with more levels.

Furthermore, the supervisors in [8] may combine control actions for enforcing control specifications with actions that

resolve system blocking. In contrast, our approach will result in a greater number of relatively simple decentralized

supervisors: some are dedicated to the given control specifications, preferably in one-to-one correspondence, while

others are dedicated only to resolving conflicts. Finally, the approach in [8] cannot guarantee maximally permissive

control.

II. NATURAL OBSERVERS

For a system described by a languageL ⊆ Σ∗ and acausal reporter mapθ [30], [33], themodel abstractionof

the system is the induced system representing languageθ(L). Especially important in SCT are reporter maps with

the observerproperty [30]. While [28] treated hierarchical control using general causal reporter maps, this paper

will construct model abstractions only withnatural observers, i.e., natural projections[1], [33] with the observer

property. This simplification better matches our more practical perspective. In Section II-A we review the properties

of natural projections that enable compositional computation. In Section II-B we state special properties of the

natural observer and present a few applications.
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A. Properties of Natural Projections

Recall [1], [33] the definitions of natural projection and its inverse image function. Standard simple properties

include the following.

Proposition 1: Given event setsΣ andΣ0 ⊆ Σ, consider the natural projectionP : Σ∗ → Σ∗

0 and four arbitrary

languagesA, B ⊆ Σ∗ andC, D ⊆ Σ∗

0. Then

1) P is surjective, i.e., ImP = Σ∗

0.

2) P is idempotent, namely,P ◦ P = P .

3) P andP−1 are monotone.

4) P ◦ P−1 = 1, where1 is the identity function onΣ∗

0, andP−1P (A) ⊇ A.

5) P andP−1 are prefix-preserving, i.e.,P (A) = P (A) andP−1(C) = P−1(C).

6) P (A ∩ B) ⊆ P (A) ∩ P (B).

7) P is a morphism of set-union, i.e.,P (A ∪ B) = P (A) ∪ P (B).

8) P−1 is a morphism of set-intersection, i.e.,P−1(C ∩ D) = P−1(C) ∩ P−1(D).

9) P−1 is a morphism of set-union, i.e.,P−1(C ∪ D) = P−1(C) ∪ P−1(D).

Proof: See [3].

Proposition 2: Consider two alphabetsΣ1, Σ2, and their intersectionΣ0 := Σ1∩Σ2. Define the natural projections

Pi : (Σ1 ∪ Σ2)
∗ → Σ∗

i (i = 0, 1, 2) and Qj : Σ∗

j → Σ∗

0 (j = 1, 2). Extend these natural projections to the

corresponding image functions [16] and denote them with thesame symbols as the functions, i.e.,Pi : 2(Σ1∪Σ2)
∗

→

2Σ∗

i (i = 0, 1, 2), Qj : 2Σ∗

j → 2Σ∗

0 (j = 1, 2). Then fori, j = 1, 2 and i 6= j,

1) Im Pi|Σ∗

j = (Im Pi)∩Σ∗

j = Σ∗

0. With codomain restricted to its image,Σ∗

0|Pi|Σ∗

j is identical to the natural

projectionQj.

2) P0|Σ∗

i = Qi.

3) P1 andP2 commute, i.e.,Pi ◦ Pj = Qj ◦ Pj = P0 = Qi ◦ Pi = Pj ◦ Pi.

4) Pi andP0 commute, i.e.,Pi ◦ P0 = P0 = P0 ◦ Pi.

5) P−1
i ◦ Q−1

i = P−1
0 .

6) Pi ◦ P−1
j = Q−1

i ◦ Qj .

Proof: See [3].

Proposition 2 is summarized by the commutative diagrams in Fig. 1, whereΣ := Σ1 ∪ Σ2. Statements 3 and 4

imply that the composition of natural projections is a natural projection whose observable event set is the intersection

of the observable event sets of the factors. In particular, composition is associative.

Corollary 1: Consider a family of natural projectionsPi : Σ∗

i → Υ∗

i (i ∈ n). Let Σ := Σ1 andΥ :=
⋂n

i=1 Υi.

Define the new natural projectionQ : Σ∗ → Υ∗. SupposeΥi ⊆ Σi+1 (i ∈ n− 1). ThenQ = Pn ◦Pn−1 ◦ · · · ◦P1.

Turning to supervisory control, consider a discrete-eventsystem consisting of two components, with languagesLi

over alphabetsΣi (i = 1, 2). We first recall the definition ofsynchronous product[33] L1||L2. Let Pi : (Σ1∪Σ2)
∗ →

Σ∗

i (i = 1, 2) be the natural projections with inverse image functionsP−1
i : 2Σ∗

i → 2(Σ1∪Σ2)∗ (i = 1, 2). Then
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Fig. 1. Commutative Diagrams for Proposition 2.

L1||L2 := P−1
1 (L1) ∩ P−1

2 (L2).

A string s ∈ L1||L2 if and only if s ∈ (Σ1 ∪ Σ2)
∗ and has the propertyPi(s) ∈ Li (i = 1, 2). Let ti :=

Pi(s) (i = 1, 2). By Proposition 2,P2(t1) = P1(t2), namely, stringst1 and t2 have the same image in their joint

event setΣ1 ∩ Σ2. This makes clear the form of strings inL1||L2. If two strings ti ∈ Li (i = 1, 2) contain the

same events inΣ1 ∩ Σ2 and these occur in the same sequence, thent1 and t2 synchronize by merging common

events inΣ1 ∩ Σ2 and arbitrarily shuffling events outsideΣ1 ∩ Σ2.

Lemma 1:Define the natural projectionsPi andQj as in Proposition 2 fori = 0, 1, 2 andj = 1, 2. For any two

languagesLi ⊆ Σ∗

i (i = 1, 2) we haveL1‖L2 6= ∅ ⇔ Q1L1 ∩ Q2L2 6= ∅.

Proof: See [3] and Appendix.

To obtain an abstraction of the system, we could first computethe system’s global behaviorL1||L2 and then its

projection. When, however, the shared events of the two components are all observable the result is obtained more

economically from abstractions of the components, according to the following (Exercise 3.3.7 in [33]). This result

is central to our method.

Proposition 3: Let Li ⊆ Σ∗

i (i = 1, 2). AssumeΣ0 ⊆ Σ := Σ1 ∪ Σ2, Pi : Σ∗ → Σ∗

i (i = 0, 1, 2), Qj : Σ∗

j →

(Σj ∩ Σ0)
∗ (j = 1, 2). If Σ1 ∩ Σ2 ⊆ Σ0, thenP0(L1‖L2) = Q1(L1)‖Q2(L2).

Proof: See [3] and Appendix.

The result is displayed by the commutative diagram, Fig. 2, whereΣ10 := Σ1 ∩ Σ0 andΣ20 := Σ2 ∩ Σ0. The

extension to an arbitrary number of synchronized factors isstraightforward [24].

B. Observer

Consider a DES described by languageL over alphabetΣ. Given an observable event subsetΣ0, we can define

the natural projectionP : Σ∗ → Σ∗

0 and then the abstractionP (L). SinceP (L) is obtained fromL throughpartial

observation, the abstraction may remove critical information and be inconsistent with the original DES with respect
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Fig. 2. Proposition 3

to controllability and nonblocking. For instance, the projection of a blocking DES could be nonblocking, so a

nonblocking supervisor designed from the abstraction could result in a blocking supervisor for the original DES.

To avoid this pitfall, one must carefully select the observable events of a DES.

Fig. 3 displays a natural projection with a “good” selection. Whenever an observed string, sayP (s), s ∈ L, can

reach a marker state in the abstracted model via a stringt ∈ Σ∗

0, the original system, at strings, must be able to

reach a marker state froms, via some stringu ∈ Σ∗ such thatP (su) = P (s)t, as illustrated in Fig. 3. Briefly,

what we expect in the observation model is surely realizablein the original model. If so, a nonblocking supervisor

for the abstracted model is also nonblocking for the original system. A natural projection defined by such a “good”

observable event set is called anobserver[28], [30].

P
(
s
)
 t


s
 u


P
 P


P
(
L
)


L


Fig. 3. Observer

Definition 1: [Observer [30]] Assume languageL ⊆ Σ∗ and let Σ0 ⊆ Σ be an observable event subset. The

natural projectionP : Σ∗ → Σ∗

0 is an L-observerif

(∀t ∈ P (L))(∀s ∈ L)P (s) ≤ t =⇒ (∃u ∈ Σ∗) su ∈ L & P (su) = t.

3

We call a natural projection with the observer property anatural observer. The symbol≤ means that the first

string is a prefix of the second one [1], [33]. IfΣ0 = Σ or ∅, P is automatically anL-observer. The observer

concept is equivalent [30] to that ofobservation equivalenceintroduced by Milner [17]. An observer is just a

function whose equivalence kernel is aquasi-congruence[32] of the dynamic system modeled byL. Denote by

||L|| the state size of thecanonical recognizer[33] of L. If the natural projectionP is anL-observer, the abstraction
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P (L) can be computed in polynomial time in||L||, and||P (L)|| ≤ ||L|| [29]. In fact, an arbitrary natural projection

can be modified in polynomial time to be a natural observer by enlarging the observable event set [6].

Proposition 4: An L-observer is also anL-observer.

Proof: See [3].

Proposition 4 implies that the requirement ofL-observer is stronger thanL-observer, becauseL embodies all the

“dynamics” inL together with extra information about marked strings. The result follows easily from Definition 1.

If a system consists of more than one plant component, for instance,L := L1‖L2, it would be more economical

to check the observer property component-wise without computing the synchronous product first. Proposition 5

presents a sufficient condition for this simplification to bevalid.

Proposition 5: Consider two languagesLi ⊆ Σ∗

i (i = 1, 2). Define the natural projectionsPi : (Σ1 ∪ Σ2)
∗ →

Σ∗

i (i = 0, 1, 2), whereΣ0 ⊆ Σ1 ∪Σ2. If Σ1 ∩Σ2 ⊆ Σ0 and for bothi = 1, 2, P0|Σ∗

i is anLi-observer, thenP0 is

an L1‖L2-observer.

Proof: See [3] and Appendix.

Proposition 8 in [31] is a special case whereΣ1 ∩ Σ2 = ∅. Our application of the observer property will be

to guarantee nonblocking control for a partially observed system, according to Theorem 6 in [30]. Replacing the

causal reporter mapθ with the natural projectionP : Σ∗ → Σ∗

0, we can affirm that ifP is an L-observer for a

languageL ⊆ Σ∗, then

(∀N ⊆ P (L))P−1(N ) ∩ L = P−1(N) ∩ L. (1)

In particular, ifN is a controllable sublanguage for the abstracted modelP (L), Equation (1) means that its inverse

projectionP−1(N) is nonconflicting with the original systemL. HenceN is a nonblocking supervisory control

under partial observation.

If two languagesLi ⊆ Σ∗

i (i = 1, 2) have the same alphabet, i.e.,Σ1 = Σ2, they arenonconflicting[34] provided

L1 ∩ L2 = L1 ∩ L2. For the general case whereΣ1 6= Σ2, we define

Definition 2: [Synchronously Nonconflicting [33]] Two languagesLi ⊆ Σ∗

i , i = 1, 2, are synchronously noncon-

flicting if L1‖L2 = L1‖L2. 3

LanguagesL1 andL2 are synchronously nonconflicting if and only ifP−1
1 (L1) andP−1

2 (L2) are nonconflicting,

wherePi are the natural projections(Σ1 ∪ Σ2)
∗ → Σ∗

i (i = 1, 2). Similarly, we sayn (≥ 2) languagesLi (i ∈ n)

are synchronously nonconflicting if they satisfy‖n
i=1Li = ‖n

i=1Li. According to [34], if two languagesK1, K2 ⊆ L

are nonconflicting, and each is controllable with respect toa prefix closed languageL ⊆ Σ∗, with Σu ⊆ Σ, then

K1 ∩K2 is also controllable with respect toL andΣu. Likewise, if K1 andK2 have different alphabets, we have

a similar result on the controllability of their synchronous productK1‖K2, as generalized in Proposition 6.

Proposition 6: For i ∈ n, let Ki ⊆ Li ⊆ Σ∗

i be controllable with respect toΣi,u ⊆ Σi and a prefix closed

languageLi. If the Ki are synchronously nonconflicting, then||ni=1Ki is controllable with respect to
⋃n

i=1 Σi,u

and ||ni=1Li.

Proof: See [3].
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An observer determines a “reliable interface” for a DES, hence the interaction between two complex DES may

be examined through their projections. IfP0 has the observer property, we can check if two languagesL1 and

L2 are synchronously nonconflicting by checking whether theirprojectionsP0(L1) andP0(L2) are synchronously

nonconflicting. Since the automaton models ofP0(Li) are smaller than those ofLi, we may save significant

computational effort, in accordance with the following.

Theorem 1 (Synchronously Nonconflicting Criterion):Let Li ⊆ Σ∗

i (i = 1, 2), andΣ0 ⊇ Σ1 ∩Σ2. If Qi : Σ∗

i →

(Σi ∩Σ0)
∗ areLi-observers (i = 1, 2), thenL1‖L2 = L1 ‖L2 if and only if Q1(L1)‖Q2(L2) = Q1(L1) ‖Q2(L2).

Proof: Define the natural projectionsPi : (Σ1 ∪ Σ2)
∗ → Σ∗

i (i = 0, 1, 2) and T : Σ∗

0 → (Σ1 ∩ Σ2)
∗. Let

Ri := Pi|Σ∗

0 (i = 1, 2). These projections are illustrated by the commutative diagram, Fig. 4.

P
1
 P
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P
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Q
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R
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 R
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  *


=
P
0
|
 *
 =
P
0
|
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Σ1Σ1

Σ2

Σ2
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Σ2

Σ2
Σ2

Σ0
Σ0Σ0

Σ0 Σ0

Σ0Σ0

∪

∩ ∩

∩

∩∩

Fig. 4. Natural Projections WhenΣ1 ∩ Σ2 ⊆ Σ0

(If) We always haveL1‖L2 = P−1
1 (L1) ∩ P−1

2 (L2) ⊆ P−1
1 (L1)∩P−1

2 (L2) = L1 ‖L2. For the reverse inclusion,

let s ∈ L1‖L2. We must show that there exists a stringu ∈ (Σ1 ∪ Σ2)
∗ with su ∈ L1‖L2. Sinces ∈ L1‖L2,

Pi(s) ∈ Li, i = 1, 2. (2)

Moreover,P0(s) ∈ P0(L1‖L2). Because of the assumptionΣ0 ⊇ Σ1 ∩ Σ2 and Proposition 3,

P0(s) ∈ Q1(L1)‖Q2(L2).

By the assumptionQ1(L1)‖Q2(L2) = Q1(L1) ‖Q2(L2), we haveP0(s) ∈ Q1(L1)‖Q2(L2) = P0(L1‖L2). Then

there must exist a stringt ∈ Σ∗

0 such thatP0(s)t ∈ P0(L1‖L2), and therefore

Ri[P0(s)t] ∈ RiP0(L1‖L2), i = 1, 2.

From Fig. 4, we see thatRi ◦ P0 = Qi ◦ Pi (i = 1, 2), and by Proposition 3,Pi(L1‖L2) ⊆ Li (i = 1, 2).
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Consequently,

RiP0(s)Ri(t) = QiPi(s)Ri(t) ∈ Qi(Li), i = 1, 2.

From Equation (2),Pi(s) ∈ Li. SinceQi is anLi-observer, there exist stringswi ∈ Σ∗

i with Pi(s)wi ∈ Li and

Qi(Pi(s)wi) = QiPi(s)Ri(t), i = 1, 2. (3)

BecauseQi(Pi(s)wi) = QiPi(s)Qi(wi), we haveQi(wi) = Ri(t) (i = 1, 2). Applying Pj (j = 1, 2; j 6= i) to

both sides of this equation, we get

PjQi(wi) = PjRi(t) = T (t).

According toΣ0 ⊇ Σ1 ∩ Σ2 and Corollary 1,

PjQi(wi) = Pj(wi), i, j = 1, 2; i 6= j.

P2(w1) = T (t) = P1(w2).

Therefore,K := {w1}‖{w2} is nonempty by Lemma 1. Takingu ∈ K, we havePi(u) = wi (i = 1, 2). According

to Equation (3), we have

Pi(s)wi = Pi(s)Pi(u) = Pi(su) ∈ Li, i = 1, 2.

Consequently,su ∈ L1‖L2, as required.

(Only if): According to the assumption, we knowL1‖L2 = L1‖L2. Applying P0 to both sides, we get by

Proposition 3,

P0(L1‖L2) = P0(L1‖L2) = Q1(L1)‖Q2(L2),

P0(L1‖L2) = Q1(L1)‖Q2(L2).

HenceQ1(L1)‖Q2(L2) = Q1(L1)‖Q2(L2).

In case the two languagesL1 andL2 are synchronously conflicting, a third languageL0, called acoordinator,

must be introduced to resolve the conflict. As in Theorem 1, the two languages may interact only “locally”, i.e.,

share only a proper subset of events. In that case, instead ofcomputing the coordinator directly from the two

languages themselves, we perform this computation throughtheir abstractions.

Proposition 7: Let Li ⊆ Σ∗

i (i = 1, 2), andΣ0 ⊇ Σ1 ∩ Σ2. In the notation of Theorem 1, if fori = 1, 2, Qi is

an Li-observer and there is a languageL0 ⊆ Σ∗

0 which satisfies

Q1(L1)||Q2(L2)||L0 = Q1(L1)||Q2(L2)||L0

thenL1||L2||L0 = L1||L2||L0.

Proof: See [3] and Appendix.

The coordinatorL0 depends only upon the event setΣ0, which contains the shared events ofL1 and L2 and
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defines the required natural observers. As long asL0 can resolve the conflict betweenQ1(L1) andQ2(L2), it will

resolve the conflict betweenL1 andL2.

III. O PTIMAL NONBLOCKING DECENTRALIZED CONTROL

A decentralized controller monitors and disables only events in anobservableevent subset. Lin and Wonham [14]

found conditions for the equivalence between decentralized and monolithic DES control, but considered only

prefix-closed languages and did not address the nonblockingproblem. Moreover, their conditions are not easy

to check, becausenormality [14], [33] must be verified for the monolithic supervisor. Inthe previous section we

saw that the observer property is a sufficient condition for nonblocking decentralized control. We now extend this

to achieveoptimality (i.e., maximal permissiveness). Though [28], [30], [31] have studied the counterpart problems

for hierarchical control with a general causal reporter mapθ, natural projection endows decentralized control with

distinct characteristics: more structure is evident and less computation is necessary.

An optimal supervisor with full observation usually disables the nearest controllable events preceding or “up-

stream” to a prohibited uncontrollable event (σ, say). If, however, some of these controllable events are unobservable,

a decentralized supervisor must disable controllable events further back, and so is more restrictive. For this restriction

to be relaxed, the observable event set must be large enough to contain all the upstream controllable events nearest to

σ. Such a decentralized supervisor will prevent the occurrence of an uncontrollable event while allowing maximal

freedom of system behavior. A projection with such an observable event set is calledoutput control consistent

(OCC) [35].

Definition 3: [OCC] Let Σ0, Σu ⊆ Σ be the observable and uncontrollable event sets. The natural projection

P : Σ∗ → Σ∗

0 is output control consistent(OCC) for the prefix-closed languageL ⊆ Σ∗, if for every strings ∈ L

of the form

s = σ1 · · ·σk or s = s′σ1 · · ·σk, k ≥ 1

which satisfies the conditions thats′ terminates with an event inΣ0, σi ∈ Σ − Σ0 (i ∈ k − 1) and σk ∈ Σ0, we

have the property thatσk ∈ Σu ⇒ (∀i ∈ k)σi ∈ Σu. 3

In the definition, whenσk is observable and uncontrollable, its immediately preceding unobservable events must

all be uncontrollable, namely, its nearest controllable event must be observable. This definition is adapted from

the same concept in [35], where it was defined for general causal reporter maps. References [33], [35] provide a

polynomial algorithm to refine a natural projection to be OCC. Notice that if Σ0 = Σ or ∅, P is automatically

OCC for L.

We can now state a practical and concise sufficient conditionfor optimal nonblocking decentralized control.

Theorem 2 (Optimal Nonblocking Decentralized Control):Let a nonblocking plant be described by closed and

marked languagesL, Lm ⊆ Σ∗ with Lm = L, along with observable and uncontrollable event setsΣ0, Σu ⊆ Σ,

respectively. Suppose the control specification isE ⊆ Σ∗

0. If the natural projectionP : Σ∗ → Σ∗

0 is anLm-observer

and OCC forL, then

sup C(E‖Lm, L) = sup C0(E ∩ P (Lm), P (L)) ‖Lm.
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Proof: See [3] and Appendix.

C(E‖Lm, L) denotes the family of languages that are sublanguages ofE‖Lm and controllable with respect to

L andΣu [1], [33]; sup C(E‖Lm, L) is the supremal element of this family and represents the behavior that the

optimal supervisor with full observation can obtain for these data. SimilarlysupC0(E ∩ P (Lm), P (L)) describes

the decentralized supervisor with partial observation onΣ0. When this supervisor is synchronized with the plant,

the final controlled behavior is the language on the right side of the equation. The result of Theorem 2 is displayed

in the commutative diagram, Fig. 5.

pwr
(  )




pwr
(  )
 pwr
(
  )





 


pwr
(  )


L
m
 


Σ∗

0 Σ∗

0

Σ∗Σ∗∈

P
P−1

m

supC(E||•, •)

sup C0(E ∩ •, •)

In the diagramP−1
m (•) := P−1(•) ∩ Lm

Fig. 5. Optimal Nonblocking Local Control

We can extend Theorem 2 to Proposition 8 to accommodate systems composed from two components.

Proposition 8: Let the plant consist of two nonblocking components with marked languagesMi ⊆ Σ∗

i (i = 1, 2).

The marked and closed languages of the plant are thenLm := M1‖M2 and L := M1‖M2. Let the observable

event subset beΣ0 ⊇ Σ1 ∩ Σ2 and corresponding natural projectionP0 : (Σ1 ∪ Σ2)
∗ → Σ∗

0. Suppose the control

specification isE ⊆ Σ∗

0. If for i = 1, 2, P0|Σ∗

i is anMi-observer and OCC forMi, then

supC(E‖Lm, L) = sup C0[E ∩ P0(Lm), P0(L)]‖Lm.

Proof: See [3] and Appendix.

The proposition replaces the languagesLm and L in Theorem 2 with the synchronous productsM1||M2 and

M1||M2. The replacement ofLm is justified by Proposition 5, and the new requirement for theobserver property

in Proposition 8 is equivalent to that in Theorem 2. However,the replacement ofL is more subtle because the new

requirement for the OCC property in Proposition 8 is much weaker than that in Theorem 2. Indeed, whenP0|Σ
∗

i

is OCC forMi (i = 1, 2), P0 need not be OCC forM1||M2.

Notice in particular thatM1 andM2 need not be synchronously nonconflicting. Hence it is possible for the plant

to be blocking, i.e.,Lm ⊂ L with strict inclusion. Thanks to Proposition 8, we need not actually compute the global

behavior of a networked system. As long as each component is properly abstracted and the abstraction is properly

controlled, we can achieve optimal and nonblocking controlfor the global system with reduced computational effort.

January 10, 2007 DRAFT



12

When the plant consists of more than two components, equality between monolithic and decentralized supervisors

may also hold. In case the plant components areindependentagents (i.e., their alphabets are pairwise disjoint),

they are necessarily synchronously nonconflicting. By an argument similar to that for Proposition 8, we obtain

Corollary 2.

Corollary 2: Let the plant consist ofn ≥ 2 nonblocking, and independent components with marked languages

Mi ⊆ Σ∗

i (i ∈ n). AssumeΣi ∩ Σj = ∅ (i 6= j). The marked and closed languages of the plant are then

Lm := ‖n
i=1Mi and L := ‖n

i=1Mi. The alphabet of the plant isΣ :=
⋃n

i=1 Σi, with assumed uncontrollable and

observable event subsetsΣu, Σ0, respectively. Let the control specification beE ⊆ Σ∗

0. Define the following natural

projections:

P0 : Σ∗ → Σ∗

0

Qi := P0|Σ
∗

i : Σ∗

i → (Σi ∩ Σ0)
∗, i ∈ n.

If for i ∈ n, Qi is anMi-observer and OCC forMi, then

sup C(E‖Lm, L) = sup C0[E ∩ P0(Lm), P0(L)] ‖Lm.

Proof: See [3].

In case the observable event subset is the union of a sub-collection of component alphabets, namely,

Σ0 =

m⋃

j=1

Σφj , m ≤ n

whereφ is a permutation [16] ofn, the conditions in the corollary hold automatically. By thecorollary the optimal

decentralized control of such a product system depends onlyon the components sharing events with the control

specifications. The other unrelated plant components play no role in the control synthesis. This property was pointed

out by Queiroz and Cury [2], and Wonham [33], but Corollary 2 extends it to a more general situation.

IV. CONTROL OFPRODUCT SYSTEMS

Having seen how to synthesize the decentralized supervisorfor one control specification, one can obtain without

difficulty a group of decentralized supervisors for the fullset of control specifications imposed on the plant. One

must then examine whether there is conflict among these decentralized supervisors and, in that case, design a

coordinator to resolve it.

In this section, we consider the supervisory control problem of a plant consisting ofn (≥ 1) nonblockingand

independentcomponents (i.e., disjoint alphabets) whose marked languages areMi ⊆ Σ∗

i (i = 1 ∈ n), with

Σi ∩ Σj = ∅ (i 6= j). The marked and prefix closed languages of the plant are therefore

Lm = ||ni=1Mi andL = Lm = ||ni=1Mi.

The complete alphabet isΣ :=
⋃n

i=1 Σi.
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For definiteness, consider the following problem3SPEC, containing three control specificationsEj (j = 1, 2, 3)

for the product plant, where eachEj applies only to those plant components whose indices make upthe set

Nj ⊆ n (j = 1, 2, 3). EachEj could in turn be an intersection of simpler specifications onMi (i ∈ Nj). Assume

Ni 6⊆ Nj (i, j ∈ {1, 2, 3}; i 6= j), as otherwise two groups could be combined into one. The corresponding

subsystems have marked languages

Hi := ||j∈Ni
Mj , i = 1, 2, 3.

The subsystem alphabets areΥi :=
⋃

j∈Ni
Σj (i = 1, 2, 3). ThusEi ⊆ Υ∗

i (i = 1, 2, 3).

The nonblocking and maximally permissive supervisory control for the system can in principle be computed in

one monolithic supervisor as

K := sup C(E1||E2||E3||Lm, L). (4)

As indicated in the Introduction, our architectural control approach attacks the problem in five steps. We illustrate

the procedure through the simple but representative example in Fig. 6. Heren = 4, N1 = {1, 2}, N2 = {3, 4}, and

N3 = {2, 3}.
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(d) Step 4

Fig. 6. Nonblocking Control of A Product System

As shown in Fig. 6(a), Step 1 is to find decentralized supervisors for all three control specifications, namely the
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languages

Ki := sup C(Ei ∩ Hi, Hi), i = 1, 2, 3. (5)

For simpler representation and implementation, we find their reductions [25]Ci (i = 1, 2, 3) such that

Ki = Ci||Hi andKi = Ci||Hi. (6)

LanguageCi results fromKi via supervisor reduction[25], [26], which in effect projects out the transition

structure of the plant from that of the supervisor. The reduction algorithm in [26] can achieve a reduced supervisor

having minimal state size, but the computation generally demands time exponential in the state size of the input

supervisor. Since the main theme of this paper is to save computational effort, the general algorithm is not acceptable.

Instead we use the algorithm of [25]1, which runs in polynomial time but may or may not yield a minimal state

result. This tradeoff is (probably) unavoidable inasmuch as [25] showed that the problem of finding a minimal state

reduction is NP-hard. Despite this limitation, the algorithm in [25] often significantly reduces the state size of the

supervisor in reasonable time.

In most cases, the alphabet ofCi is smaller than event setΥi, i.e., Ci ⊆ (Υ′

i)
∗ for someΥ′

i ⊆ Υi. Thus more

events may be erased through model abstraction.

SinceEj (j = 1, 2) may be the intersection of simpler specifications, each subsystem modeled byK1 or K2 may

also be the synchronous product of a group of decentralized supervisors. The coordinators of these decentralized

supervisors can be attained by monolithic control or successive application of the five-step procedure, depending on

the state sizes of the subsystems. In addition to the connection via C3, the two subsystems may also share common

events, although this situation is not reflected in Fig. 6(b).

Rather than verify the nonconflicting property among the three decentralized supervisors, Step 2 organizes the

product system and the decentralized supervisors as the hierarchical structure in Fig. 6(b). Here the controlled

systems represented byK1 andK2 are considered as two plant components which are further regulated by supervisor

C3.

Using the model abstraction technique, Step 3 checks if the product system supervised by the three decentralized

supervisorsCi (i = 1, 2, 3) is nonblocking. Since each subsystem is only partially related with C3, we erase any

events not shared withC3 from the models ofK1 and K2 through natural observersQ1 and Q2 as specified in

Theorem 3. Then the verification thatK1, K2, andK3 are synchronously nonconflicting is achieved through the

simpler computation onQ1(K1), Q2(K2) andK3, as specified in Fig. 6(c).

Theorem 3:For 3SPEC, let Υ0 ⊇ Υ3 ∪ (Υ1 ∩ Υ2) and Qi : Υ∗

i → (Υi ∩ Υ0)
∗ (i = 1, 2). If the Qi are

Ki-observers (i = 1, 2) and

Q1(K1)||Q2(K2)||K3 = Q1(K1)||Q2(K2)||K3,

1Implemented assupreduce in software XPTCT [33].
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whereKi(i = 1, 2, 3) are defined in Equation (5), thenK1, K2, K3 are synchronously nonconflicting andK1||K2||K3

is the maximally permissive solution to the control problem.

Proof: By Proposition 7, we can immediately show thatK1||K2||K3 = K1||K2||K3, namely, theKi (i =

1, 2, 3) are synchronously nonconflicting. Consequently the existing theory of modular control [1], [2], [33], [34]

yields the conclusion

K1||K2||K3 = sup C(E1||E2||E3||Lm, L). (7)

In case the condition in Theorem 3 fails, i.e.,Q1(K1), Q2(K2), K3 conflict, we should proceed to Step 4 to

design a coordinator. The coordinator design for two subsystems is spelled out in Proposition 7. Using the same

idea, we can design a coordination scheme for the three supervisorsKi (i = 1, 2, 3) of the product system.

In principle, the coordinator for the three supervisors is another supervisor for the new plant composed from

K3 and the abstractions ofK1 andK2. The specification for this high level plant is simplyΣ∗, because the only

purpose of the coordinator is to resolve the conflict among the three supervisors. This coordination scheme is shown

in Fig. 6(d).

The supervisor for the high level plant is then

KC := sup C(Q1(K1)||Q2(K2)||K3, Q1(K1)||Q2(K2)||K3) (8)

Its reduction is languageC such that

KC = C||Q1(K1)||Q2(K2)||K3 (9)

KC = C||Q1(K1)||Q2(K2)||K3 (10)

The following theorem provides a sufficient condition for a supervisor recognizing languageC to be a coordinator

for the three modular supervisors.

Theorem 4:For 3SPEC, let Υ0 ⊇ Υ3 ∪ (Υ1 ∩ Υ2) and P0 : Σ∗ → Υ∗

0. Define Qi := P0|Υ∗

i (i = 1, 2).

If the Qi are Ki-observers (i = 1, 2) and for j ∈ n, P0|Σ∗

j are OCC forMj , then the languageC defined by

Equations (8),(9),(10) is a coordinator for supervisorsKi (i = 1, 2, 3) defined by Equations (5), namely,

K1||K2||K3||C = K1||K2||K3||C (11)

K1||K2||K3||C = sup C(E1||E2||E3||Lm, L). (12)

Proof: See [3], [4] and Appendix.

When the component index sets meet the conditionN3 ⊆ N1 ∪ N2, we can replace languageK3 in Theorem 4

with its reductionC3, because the plant information embodied inK3 is already included inK1 andK2. Then the

implementation ofKC from Equation (8) simplifies to

K ′

C := sup C(Q1(K1)||Q2(K2)||C3, Q1(K1)||Q2(K2)||C3). (13)
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Here supervisorK3 is replaced by its reductionC3. Let the reduction ofK ′

C be C′.

K ′

C = Q1(K1)||Q2(K2)||C3||C
′ (14)

K ′

C = Q1(K1)||Q2(K2)||C3||C′ (15)

ThusC′ is the coordinator for the three decentralized supervisors.

Corollary 3: For 3SPEC, let N3 ⊆ N1 ∪ N2. Let C3 ⊆ (Υ′

3)
∗ be the supervisor reduction ofK3 as defined

by Equation (6),Υ0 ⊇ Υ′

3 ∪ (Υ1 ∩ Υ2) andP0 : Σ∗ → Υ∗

0. If P0|Υ∗

i areKi-observers (i = 1, 2) andP0|Σ∗

j are

OCC for Mj (j ∈ n), then the languageC′ defined by Equations (14) and (15) is a coordinator for supervisors

Ki (i = 1, 2, 3) defined by Equation (5), namely,

K1||K2||K3||C′ = K1||K2||K3||C′ (16)

K1||K2||K3||C
′ = sup C(E1||E2||E3||Lm, L) (17)

Proof: See [3].

One advantage of using this corollary is to compute the coordinator with the reduction of supervisorK3. Another

is that the automaton models of the abstractions of supervisorsK1 andK2 may have smaller state sizes. The alphabet

Υ′

3 of supervisor reductionC3 is normally smaller thanΥ3. Hence the observable event setΥ0 in the corollary is

smaller than that appearing in Theorem 4. More events may be suppressed by the natural projections defined in

this corollary.

Step 5 of the architectural control approach may consist of an iteration of Steps 3 and 4, if necessary. In the

illustrative example in Fig. 6, there are only two model abstractions and we have already designed the coordinator

between them. Hence the computation process for the illustrative example terminates at Step 5 without any further

iteration. However, in more complex situations, we regard agroup of already coordinated model abstractions as a

new subsystem, which is maximally permissive and nonblocking, at a higher level and find its model abstraction

again. We repeat the verification and coordination methods presented in this section on these newly generated model

abstractions.

V. COMPLEXITY STUDY

This section naively estimates the time and space complexities [22] of the architectural supervisory control

approach. We first summarize the computational complexity of the fundamental algorithms. Then the time and

space complexities of the control synthesis process proposed in Section IV are estimated and compared with those

of monolithic supervision. Based on the complexity study, we suggest how to apply the approach effectively.

Table I lists the computational complexities of the algorithms [18] employed by the architectural control approach.

The first column lists the algorithms, the second and third columns list the time and space complexities, and the

last column the state sizes of the algorithm outputs. For simplicity we assume that an upper bound of the state

sizes of the automaton models of plant componentsMi (i ∈ n) is M and of the specifications isN .
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TABLE I

COMPLEXITIES OFFUNDAMENTAL ALGORITHMS

Algorithm Time Space Output
||ki=1Mi O(Mk) O(Mk) Mk

sup C(Ei||Mj , Mj) O(M2N2) O(MN) αMN(α ≤ 1)
P (Mi) O(2M ) O(2M ) λ2M (λ ≤ 1)
Compt.Mi-observer O(M3) O(M) λM(λ ≤ 1)
Compt. OCC forMi O(M2) O(M) M

An algorithm that extends the observable event set of a natural projection to produce a natural observer is

presented in [6]. That algorithm can also obtain an automaton model of the projected language using the natural

observer; this model will have no more (in general, fewer) states than the input language [29]. An algorithm to

modify a natural projection to be OCC can be adapted from the algorithm in Section 5.5 of [33].

We first estimate the complexity of monolithic supervision.The monolithic supervisor for the control problem in

Section IV is obtained by Equation (4). Accordingly, we needto compute the synchronous product of all the plant

components and the specifications. The complexity is

Time: O(M2nN6), Space:O(MnN3), Final Result:αmMnN3 (18)

Hereαm ≤ 1 is a case-dependent coefficient determined by the transition functions of the plant and specification

models.

Next we estimate the complexity of the architectural control approach proposed in Section IV. Suppose the

component numbers in the three subsystemsNi(i = 1, 2, 3) areki := ||Ni||(i = 1, 2, 3), respectively.

At Step 1 we compute the decentralized supervisorsKi (i = 1, 2, 3) by Equation (5). For that, we need to

compute the subplantsHi (i = 1, 2, 3). The computation for one subplant is

Time and Space:O(Mki), Final Result:Mki .

Then the computational complexities for decentralized supervisorsKi(i = 1, 2, 3) are

Time: O(M2kiN2), Space:O(MkiN), Final Result:αiM
kiN (19)

Similarly αm andαi ≤ 1 (i = 1, 2, 3).

At Step 2, we organize the plant and three decentralized supervisors into subsystems. To this end we represent

the interconnection relationships of the product system bya graph, for instance, acontrol flow net[6], and partition

the graph. By graph theory the algorithms are polynomial in the number of nodes, which is also the number of plant

componentsn. Compared with the time and space used for other steps, the complexity for Step 2 is negligible.

At Step 3 we verify using Theorem 3 whether the three decentralized supervisors are synchronously nonconflicting.

The key to using this theorem is to find an event setΥ0 such that the natural projections used in Theorem 3 have the
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observer property. Since Theorem 4 also requires that the natural projections based onΥ0 have the OCC property,

we must ensure thatΥ0 meets this requirement as well.

The OCC property should be checked first, for which the computational complexity is

Time: O(nM2), Space:O(M), Final Result:M (20)

Then the event set that guarantees the OCC property should beenlarged to achieve the observer property. Based

on Table I, the computations take

Time: O(α4
i M

4kiN4) = O(M4kiN4), Space:O(MkiN)

Meanwhile, the algorithm for achieving the observer property will obtain the automaton models ofQi(Ki) (i = 1, 2).

The two models have state sizes

Final Result:λiαiM
kiN, i = 1, 2. (21)

Hereλi ≤ 1 (i = 1, 2), because when the natural projection has the observer property, the state size of the projection

model is never greater than that of the original model.

We then compute the synchronous product ofQ1(K1), Q2(K2), K3 and check if the result is nonblocking; this

requires

Time and Space:O(λ1λ2α1α2M
k1+k2+k3N3) = O(MnN3),

Final Result:λ1λ2α1α2α3M
nN3

whereα3 ≤ 1 is a coefficient determined by the transition functions of the three languages.

If the result fails to be nonblocking, we proceed to step 4 to design the coordinatorKC by Equation (8).

Time: O(λ2
1λ

2
2α

2
1α

2
2α

2
3M

2nN6) = O(M2nN6),

Space:O(λ1λ2α1α2α3M
nN3) = O(MnN3),

Final Result:λ1λ2α1α2α3α4M
nN3 (22)

whereα4 ≤ 1 is determined by the algorithm computing the supremal controllable sublanguage.

The total time complexity of the architectural control approach is then

O[

3∑

i=1

(Mki + M2kiN2) + M4k1N4 + M4k2N4 + nM2

+MnN3 + M2nN6] = O(M2nN6)

Since space is reusable, the space complexity of the whole process is determined by the most costly step, i.e.,
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the last. The space complexity is thenO(MnN3).

On comparing the time and space complexities of the architectural control approach with those of the monolithic

approach given in Equation (18), we conclude as follows.

1) The complexity bounds of our design approach are still exponential in the number of plant components and

control specifications. Hence the approach will in general still be afflicted by state explosion.

2) The complexity is reduced by the coefficientsαi and λi. In favorable cases, the product of a sequence of

these coefficients might be small, significantly reducing the computational workload.

3) Because the coefficientsαi are determined by the transition functions of the plant and control specifications,

we have no way to decrease them. We can, however, affect the value of eachλi and the total number of them

through our partition of the system.

4) To increase the total number of coefficientsλ, we should divide the given system into more subsystems. In

the model abstraction of these subsystems, each one will contribute a coefficientλ.

5) To decrease the value of each coefficientλ, the observable event sets of the natural projections should be

small.

6) The two options above are mutually countervailing. If a partition results in too many subsystems, many control

specifications might interact with the subsystems. Each subsystem must then have a larger observable event

set. Conversely, if the system is organized into a small number of subsystems, one subsystem must contain

more control specifications and larger computational effort is consumed within each subsystem. A judicious

trade-off must be chosen between them.

VI. EXAMPLE : AGV SYSTEM

We apply the proposed approach to the decentralized supervisory control of a system of automatic guided vehicles

(AGVs) serving a manufacturing work cell. The example is from [9], as augmented in [33]. In [4] we gave a

solution to this example, remarking that we had obtained a simpler solution with less computation on combining

the architectural control approach withcontrol flow decomposition. This section elaborates the better solution.

The system consists of two input stations IPS1 and IPS2 for parts of types 1, 2; three work stations WS1, WS2,

WS3; one completed parts station CPS; and five AGVs (A1, . . . , A5). The AGVs travel around fixed circular routes,

on which they are loaded and unloaded by stations and machines, as shown in Fig. 7. A detailed description can

be found in [33], Section 4.7.

Corresponding to the five AGVs, the plant model consists of five automataAi with alphabetsΣi (i = 1, . . . , 5).

There are totally eight automaton models for the control specifications. Four (Zi, i = 1, . . . , 4) stand for the zone

restrictions, three (WSi, i = 1, . . . , 3) for the operational constraints in work stations, and one (IPS) for the

restriction about the common loading area between IPS1 and IPS2. Events and state transition diagrams of the

automata can be found in [33], Section 4.7.

The control-flow netof the AGV example is shown in Fig. 8(a). Note that the original definition of specification

WS1 in [33] does not meet the requirements of abuffer defined by Definition 3 in [5]. WS1 can, however,
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Fig. 7. An AGV System

be replaced by two automata that both satisfy the buffer definition, that is,WS1 = WS13||WS14. The state

transition diagrams of the three automata are shown in Fig. 9.

As prescribed in Section IV, we first design the decentralized supervisors of the eight specifications, which can

be found in [33], Section 4.7. The state sizes of the nine decentralized supervisors are listed in Table II.

TABLE II

DECENTRALIZED SUPERVISORS

Spec Sup (State#) Spec Sup (State#)
Z1 ZR1 (2) Z2 ZR2 (2)
Z3 ZR3 (2) Z4 ZR4 (2)

WS13 WR13 (2) WS14 WR14 (2)
WS2 WR2 (2) WS3 WR3 (2)
IPS IPR (2)

While the synchronous product of the first eight decentralized supervisors for control specificationsZi (i =

1, . . . , 4) andWSj (j = 1, 2, 3) is nonblocking, conflict arises when we introduce the supervisor for IPS. Hence

we must design a coordinator to resolve the conflict. The coordinator obtained in [33] was a natural projection of the

monolithic supervisor (4406 states) for the full AGV system. After projection of irrelevant events, the coordinator

for this system was finally an automaton with 29 states. This approach, however, required the (complex) computation

of the monolithic supervisor. In the following, we show how this can be avoided.
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By Proposition 3 in [5], the decentralized supervisors for the four zones, Z1 to Z4, areirrelevantto the nonblocking

property. In other words, if we find the nonblocking supervisor of the remaining system, it must be synchronously

nonconflicting withZR1 to ZR4. We therefore ignore the four decentralized supervisors inthe coordinator design

and simplify the control-flow net in Fig. 8(a) to the net in Fig. 8(b). The structure in the simplified net is very

clear. There are two processing paths: A1, WS2, A3, WS13, A5 on the right and A2, WS3, A4, WS14, A5 on the

left. The two processing paths share one output machine A5 and their input machines share the server resource

IPS. Hence the control-flow net of the AGV example has the parallel connection identified in [5].

The right-hand path, A1, WS2, A3, WS13, A5, determines a subsystemSub1 with 140 states. The left-hand

path, A2, WS3, A4, WS14, A5, determines subsystemSub2 with 330 states.

To apply Corollary 3, we find the events shared between the twosubsystems. LetΥ1, Υ2 be the alphabets of

Sub1,Sub2, respectively. Evidently they share vehicle A5 at the bottom, i.e.,Υ1 ∩Υ2 = Σ5. At the top, vehicles
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A1 and A2 are connected via the decentralized supervisor of specificationIPS. The state transition diagram of the

decentralized supervisor is shown in Fig. 10. Let the alphabet of the supervisor in Fig. 10 beΥ′

3 := {11, 13, 21, 23}.

According to Corollary 3, the observable event setΥ0 must be such thatΥ0 ⊇ Υ′

3 ∪ (Υ1 ∩ Υ2).

11, 21


13, 23


Fig. 10. Decentralized Supervisor ofIPS

Using the algorithm in [32] or [6], we determine thatΥ0 = Υ′

3 ∪ (Υ1 ∩Υ2); furthermore the natural projection

P0 : Σ∗

0 → Υ′

0 enjoys theLm(Sub1), Lm(Sub2)-observer and OCC properties.

Projecting the two subsystems to event setΥ0, we get their abstractions,

Int1 := P0(Sub1) (30 states)

Int2 := P0(Sub2) (30 states)

The synchronous product of the two abstractions and the decentralized supervisor in Fig.10 is ablockingautomaton.

IntIP := Int1||Int2||IPR (171 states)

Using Corollary 3, we can find a coordinator forIntIP, CR with 7 states, as in Fig. 11. The most costly computation

in this process is forSub2, which has only 330 states.

0
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5
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4
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11,21,51


13
 13


23
 23


13
 23
23


23


23


13


13


11, 21,51


21


11,21,51


11

21

51


11


11,21,51


13


Fig. 11. CoordinatorCR

Not only does the new coordinator have smaller state size, but it also reveals the principle for eliminating blocking.

Event 11 must be disabled at state 5 where event 13 occurs three more times than event 23, namely subsystem
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Sub1 contains three more parts thanSub2. Dually, event 21 must be disabled at state 6 where event 23 occurs

three more times than event 13, namely subsystemSub2 contains three more parts thanSub1.

We provide a more transparent summary of the control actionsof the coordinator. Deadlock arises in the AGV

system when the vehicles and the work stations in one path in Fig.8(b) are all full, whereas the vehicles and the

work stations in the other path are all empty. For illustration, suppose that WS1, WS2, A1 and A3 are full of type

1 parts, and A1 stops at the input station IPS1, while WS1, WS3, A2 and A5 do not carry any type 2 part. In

this scenario, work station WS1 cannot produce any completepart, because of the lack of a type 2 part. Moreover,

the type 2 part needed by WS1 cannot enter the system, becauseA2 cannot reach the input station IPS2 owing to

specificationIPS. Similarly, deadlock arises when WS1, WS3, A2 and A5 are fullof type 2 parts, and A2 stops

at the input station IPS2, while WS1, WS2, A1 and A3 do not carry any type 1 part. The control action of the

coordinatorCR prevents the occurrence of both scenarios.

VII. C ONCLUSIONS

Although the synthesis of an optimal and nonblocking supervisor generally demands exponential time, we may

often avoid the worst case and design the supervisor using modularity and model abstraction. A networked discrete-

event system should, if possible, be divided and organized into subsystems based on the dependency relationships

among plant components and control specifications. This decomposition will impose a hierarchical structure on the

networked system. We independently compute the supervisors of the low level subsystems without regard to their

mutual conflict. Subsequently we design coordinators for these controlled subsystems by high level supervision

of them. To reduce computational complexity, we compute thehigh level coordinators based only on abstracted

models of the controlled subsystems. Effective and consistent model abstraction is accomplished through natural

projections with the observer and OCC properties.

The contribution of this paper is a practical supervisory control design approach that is capable of achieving

maximally permissive and nonblocking control with decentralized supervisors. Thanks to distributed computation

and information hiding, the architectural approach to control design is not only computationally efficient, but can

also produce intuitively understandable supervisory controllers.
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APPENDIX

SELECTED PROOFS

Proof of Lemma 1:

(=⇒) SinceL1‖L2 6= ∅, there exists some strings ∈ L1‖L2. ThenPi(s) ∈ Li (i = 1, 2). Applying natural

projectionsQ1 and Q2 respectively to both equations,Q1P1(s) ∈ Q1L1 and Q2P2(s) ∈ Q2L2. Because of

Statement 3 of Proposition 2,QiPi(s) = P0(s) (i = 1, 2). Hence the above equations implyP0(s) ∈ Q1L1 and

P0(s) ∈ Q2L2. ThereforeP0(s) ∈ Q1L1 ∩ Q2L2 andQ1L1 ∩ Q2L2 6= ∅.

(⇐=) SinceQ1L1 ∩ Q2L2 6= ∅, we can select a stringt ∈ Q1L1 ∩ Q2L2, of form

t = σ0 σ1 · · ·σn, n ≥ 0, σ0 = ǫ, σi ∈ Σ0, i ∈ n

Note that ifn = 0 string t is just the empty stringǫ. Hence there must exist stringss1 ∈ L1 ands2 ∈ L2 such that

Q1(s1) = t = Q2(s2), having the form

s1 = u0 σ1 u1 · · ·un−1 σn un, ui ∈ (Σ1 − Σ0)
∗
, i ∈ {0, . . . , n}

s2 = v0 σ1 v1 · · · vn−1 σn vn, vi ∈ (Σ2 − Σ0)
∗
, i ∈ {0, . . . , n}.

From s1, s2 we can construct a new string

ω := u0 v0 σ1 u1 v1 · · ·un−1 vn−1 σn un vn.

Evidently,P1(ω) = u0 σ1 u1 · · ·un−1 σn un = s1 ∈ L1 andP2(ω) = v0 σ1 v1 · · · vn−1 σn vn = s2 ∈ L2. Therefore

ω ∈ L1‖L2 and henceL1‖L2 6= ∅.

Proof of Proposition 3

The proof needs the following lemma.

Lemma 2:Let Li ⊆ Σ∗

i (i = 1, 2). Let Σ0 := Σ1 ∩ Σ2. Define natural projections as in Fig. 1 (a). Then for

i, j = 1, 2 and i 6= j, Pi(L1‖L2) = Li ∩ Q−1
i Qj(Lj).
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Proof: (⊆)

Pi(L1‖L2) = Pi(P
−1
i Li ∩ P−1

j Lj) ⊆ PiP
−1
i (Li) ∩ PiP

−1
j (Lj), i, j = 1, 2; i 6= j.

By Statement 6 of Proposition 2, we then havePiP
−1
i (Li) ∩ PiP

−1
j (Lj) = Li ∩ Q−1

i Qj(Lj).

(⊇) Let s ∈ Li ∩ Q−1
i Qj(Lj). Thuss ∈ Li, s ∈ Q−1

i Qj(Lj), and

Qi(s) ∈ Qj(Lj). (23)

Define the languageK = {s}‖Lj = P−1
i {s} ∩ P−1

j (Lj). Sinces ∈ Li, K ⊆ L1‖L2. Based on Lemma 1 and

Equation (23), we knowK 6= ∅. For any stringt ∈ K, we havet ∈ L1‖L2 and t ∈ P−1
i {s}. HencePi(t) = s.

Therefores ∈ Pi(L1‖L2) as required.

Returning to the proof of Proposition 3, we bring in the natural projections defined in Fig. 4. LetRi := Pi|Σ∗

0

andQi := P0|Σ∗

i (i = 1, 2).

It is straightforward to show thatP0(L1‖L2) ⊆ Q1(L1)‖Q2(L2). Actually, by Propositions 1 and 2,

P0(L1‖L2) = P0(P
−1
1 (L1) ∩ P−1

2 (L2)) ⊆ P0P
−1
1 (L1) ∩ P0P

−1
2 (L2)

= R−1
1 Q1(L1) ∩ R−1

2 Q2(L2) = Q1(L1)‖Q2(L2).

Conversely let strings ∈ Q1(L1)‖Q2(L2) ⊆ Σ∗

0. ThenRi(s) ∈ Qi(Li) (i = 1, 2). We define languageK as

K := P−1
0 {s} ∩ P−1

1 (L1) ∩ P−1
2 (L2) = {s}‖L1‖L2

Since synchronous product is associative and commutative [33],K = ({s}‖L1)‖({s}‖L2). Let Ki = {s}‖Li (i =

1, 2). Becauses ∈ Σ∗

0, thenKi ⊆ (Σ0∪Σi)
∗ (i = 1, 2). The joint event set ofK1 andK2 is (Σ0∪Σ1)∩(Σ0∪Σ2) =

Σ0. To prove thatK 6= ∅, by Lemma 1 we need to calculateP0(K1) andP0(K2). Since{s} ⊆ Σ∗

0, we compute

P0(Ki) (i = 1, 2) by Lemma 2:

P0(Ki) = P0({s}‖Li) = {s} ∩ R−1
i Qi(Li), i = 1, 2. (24)

According to the assumption thats ∈ Q1(L1)‖Q2(L2), Ri(s) ∈ Qi(Li) and hences ∈ R−1
i Qi(Li) (i = 1, 2).

Therefore Equation (24) yieldsP0(Ki) = {s} (i = 1, 2). This result meansP0(K1)∩P0(K2) = {s} 6= ∅. According

to Lemma 1,K = K1‖K2 6= ∅.

By the definition of languageK, we know thatK ⊆ P−1
0 {s} andK ⊆ L1‖L2. Let stringt ∈ K. ThenP0(t) = s

and t ∈ L1‖L2. Consequentlys ∈ P0(L1‖L2) andQ1(L1)‖Q2(L2) ⊆ P0(L1‖L2).

Proof of Proposition 5:

According to Fig. 4, letQi := P0|Σ∗

i andRi := Pi|Σ∗

0 (i = 1, 2). Let t ∈ P0(L1‖L2), s ∈ L1‖L2, andP0(s) ≤ t.

To justify the statement, we must find a stringw ∈ (Σ1 ∪ Σ2)
∗ such thatsw ∈ L1‖L2 andP0(sw) = t.
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Since it is always true thatL1‖L2 ⊆ L1‖L2, s ∈ L1‖L2. Consequently, fori = 1, 2,

Ri(t) ∈ RiP0(L1‖L2) = QiPi(L1‖L2) ⊆ Qi(Li)

andPi(s) ∈ Li. BecauseP0(s) ≤ t, we can applyRi on both sides, to get

RiP0(s) = QiPi(s) ≤ Ri(t).

Now that Ri(t) ∈ Qi(Li), Pi(s) ∈ Li, we can conclude by the hypothesis of the proposition thatQi is an

Li-observer, so

(∃ui ∈ Σ∗

i )Pi(s)ui ∈ Li (25)

and

Qi[(Pi(s)ui] = Ri(t), i = 1, 2. (26)

Apply Pj (j = 1, 2; j 6= i) on both sides of Equation (26) to get

Pj [Qi((Pi(s)ui)] = PjRi(t)

Pj [QiPi(s)Qi(ui)] = T (t)

According to Corollary 1,PjQiPi(s) = P1P2(s) and PjQi(ui) = Pj(ui). Hence the preceding equation shows

that

P1P2(s)P1(u2) = T (t) = P1P2(s)P2(u1) ⇒ P1(u2) = P2(u1).

Recall thatui ∈ Σ∗

i . Then we conclude by Lemma 1 that{u1}‖{u2} 6= ∅. Supposev ∈ Σ∗

0 with

P0(s)v = t. (27)

Let X := ({u1}‖{u2})‖{v}. We already know that{u1}‖{u2} is nonempty. Hence we should further prove

that v ∈ P0({u1}‖{u2}) to establishX 6= ∅. Applying Ri (i = 1, 2) on both sides of Equation (27), we get

RiP0(s)Ri(v) = Ri(t) and henceQiPi(s)Ri(v) = Ri(t) (i = 1, 2). Comparing this result with Equation (26), we

obtainRi(v) = Qi(ui) (i = 1, 2). Thereforev ∈ Q1{u1}‖Q2{u2}. By Proposition 3,v ∈ P0({u1}‖{u2}). Then

by Lemma 1,X = ({u1}‖{u2})‖{v} 6= ∅.

Taking any string from set X, sayw ∈ X , we see immediately thatP0(w) = v andPi(w) = ui (i = 1, 2). Insert

these equalities into Equations (25), (27), to get

Pi(sw) ∈ Li, i = 1, 2,

andP0(sw) = P0(s)P0(w) = P0(s)v = t. Thereforesw ∈ L1‖L2 andP0(sw) = t. ThusP0 is anL1‖L2-observer.
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Proof of Proposition 7:

Let L′

0 := Q1(L1)||Q2(L2)||L0. Then we have

L′

0 = Q1(L1)||Q2(L2)||L0 = Q1(L1)||Q2(L2)||L0.

Consequently,

L1||L2||L
′

0 = (L1||Q1(L1))||(L2||Q2(L2))||L0 = L1||L2||L0.

and similarly,L1||L2||L′

0 = L1||L2||L0. The proposition is now reduced to showing thatL1||L2||L′

0 = L1||L2||L′

0.

We first show thatL1 andL2 are each synchronously nonconflicting withL′

0. For i = 1, 2, sinceQi(Li)||L′

0 = L′

0

and Qi(Li)||L′

0 = L′

0, we can claim thatQi(Li) and L′

0 are synchronously nonconflicting, i.e.,Qi(Li)||L′

0 =

Qi(Li)||L′

0. According to the assumption thatQi is an Li-observer, Proposition 1 ensures thatLi and L′

0 are

synchronously nonconflicting, i.e.,

Li||L′

0 = Li||L′

0, i = 1, 2. (28)

Let Ji := Li‖L
′

0 ⊆ (Σi ∪Σ0)
∗ (i = 1, 2). By Proposition 5,P0 is then also aJi-observer. Because synchronous

product is associative and commutative,

L1‖L2‖L
′

0 = (L1‖L
′

0)‖(L2‖L
′

0) = J1‖J2.

Next we show thatJ1 andJ2 are also synchronously nonconflicting. SinceJi ⊆ (Σi ∪Σ0)
∗ (i = 1, 2), the joint

event set betweenJ1 andJ2 is thenΣ0. By Proposition 3,

P0Ji = P0(Li‖L
′

0) = Qi(Li)‖L
′

0 = L′

0, i = 1, 2.

HenceP0J1 ∩ P0J2 = L′

0. Similarly by Equation (28),

P0Ji = P0(Li‖L′

0) = P0(Li‖L′

0) = Qi(Li)‖L′

0 = L′

0, i = 1, 2.

ThereforeP0J1 ∩ P0J2 = P0J1 ∩ P0J2. The equation demonstrates thatP0J1 andP0J2 are nonconflicting. Since

P0 is aJ1 andJ2-observer, we conclude thatJ1 andJ2 are synchronously nonconflicting, namely,J1‖J2 = J1‖J2.

Using the definition ofJi (i = 1, 2) in the above equation and applying Equation (28), we getL1‖L2‖L′

0 =

L1‖L2‖L′

0.

Proof of Theorem 2:

For this we introduce a new lemma.

Lemma 3:Let L and X be prefix closed languages over the alphabetΣ and let X ⊆ L. Suppose language

K ⊆ X is controllable with respect toΣu ⊆ Σ and L. If the natural projectionP : Σ∗ → Σ∗

0 is an X-observer

and is OCC forL, thenP (K) is controllable with respect toP (X) andΣu ∩ Σ0.

Proof: Let t ∈ P (K), σ ∈ Σu ∩ Σ0 and tσ ∈ P (X). There must exist a strings ∈ K with t = P (s). We
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selects so that

t = ǫ =⇒ s = ǫ (29)

t 6= ǫ =⇒ (∀s′ < s)P (s′) < t. (30)

BecauseP is an X-observer, there is a stringv ∈ Σ∗ with sv ∈ X and P (sv) = P (s)P (v) = tP (v) = tσ.

Hence we can find a stringu ∈ (Σ − Σ0)
∗ such thatv = uσ.

Becauseσ ∈ Σu ∩ Σ0 andP is OCC forL, we know from Definition 3 thatu ∈ Σ∗

u. SinceK is controllable

with respect toL, suσ ∈ K andP (suσ) = tσ ∈ P (K).

The procedure above shows that

P (K)(Σu ∩ Σ0) ∩ P (X) ⊆ P (K).

This means thatP (K) is indeed controllable with respect toP (X), as required.

The proof of Theorem 2 is as follows.

(⊇) Let K0 := sup C0[E ∩ P (Lm), P (L)] and K := sup C(E‖Lm, L). Since sup C0[E ∩ P (Lm), P (L)] ⊆

E ∩ P (Lm), there follows

K0‖Lm ⊆ [E ∩ P (Lm)]‖Lm = P−1[E ∩ P (Lm)] ∩ Lm

= P−1(E) ∩ P−1P (Lm) ∩ Lm = E‖Lm. (31)

Next we show thatK0‖Lm is controllable with respect toL. By its definition,K0 ⊆ P (Lm). Since we assume

that P is anLm-observer, Theorem 1 implies

K0‖Lm = K0‖Lm = K0‖L,

namely,K0 andLm are synchronously nonconflicting.

BecauseK0 is controllable with respect toP (L), Proposition 6 implies thatK0||Lm is controllable with respect

to P (L)||L = L. Using Equation (31), we conclude

K0‖Lm = sup C0[E ∩ P (Lm), P (L)]‖Lm ⊆ supC(E‖Lm, L) = K.

(⊆) To prove thatK ⊆ K0‖Lm, it suffices to prove thatP (K) ⊆ K0 andK ⊆ Lm. As the latter inclusion is

evident, we need only prove the first statement. SinceK ⊆ E‖Lm, Proposition 3 impliesP (K) ⊆ P (E‖Lm) =

E ∩ P (Lm).

Using Lemma 3 we can also show thatP (K) is controllable with respect toP (L), becauseP is anL-observer

and OCC forL. Now thatP (K) ∈ C0(E ∩ P (Lm), P (L)), there follows

P (K) ⊆ K0 = sup C0(E ∩ P (Lm), P (L)).
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Proof of Proposition 8

Lemma 4:Let Li be two prefix-closed languages over alphabetΣi (i = 1, 2) and letX ⊆ L1||L2 be a third

prefix-closed language. Suppose languageK ⊆ X is controllable with respect toΣu ⊆ Σ1 ∪ Σ2 andL1‖L2. Let

the observable event set beΣ0 ⊇ Σ1∩Σ2. Refer to the natural projections defined in Fig. 4. IfP0 is anX-observer

andQi is OCC forLi (i = 1, 2), thenP0(K) is controllable with respect toΣu ∩ Σ0 andP0(X).

Proof: Let t ∈ P0(K), σ ∈ Σu ∩ Σ0, and tσ ∈ P0(X). We will show thattσ ∈ P0(K). First, there exists a

string s ∈ K such thatP0(s) = t ands satisfies Equations (29), (30).

Sincetσ = P0(s)σ ∈ P0(X) andP0 is anX-observer, there is a stringu ∈ (Σ1 ∪ Σ2)
∗ such thatsu ∈ X and

P0(su) = P0(s)σ. ClearlyP0(u) = σ. Hence there is a stringv ∈ (Σ1 ∪ Σ2 − Σ0)
∗ with u = vσ andsvσ ∈ X .

If σ ∈ Σu ∩ Σ1 ∩ Σ2, thenPi(svσ) = Pi(s)Pi(v)σ ∈ Pi(X) (i = 1, 2). BecauseX ⊆ L1‖L2,

Pi(X) ⊆ Pi(L1‖L2) ⊆ Li, i = 1, 2. (32)

Consequently,Pi(s)Pi(v)σ ∈ Li (i = 1, 2). EvidentlyPi(s) ∈ Li, Pi(v) ∈ (Σi−Σ0)
∗. SinceQi is OCC forLi and

σ ∈ Σu ∩ Σ0, Pi(v) ∈ (Σi ∩ Σu)∗ (i = 1, 2). Thus we can infer thatv ∈ Σ∗

u. Becauses ∈ K, svσ ∈ L1‖L2, and

K is controllable with respect toL1‖L2, we havesvσ ∈ K andP0(svσ) = P0(s)σ = tσ ∈ P0(K), as required.

If σ ∈ Σu ∩ Σ0 ∩ Σi − Σj (i 6= j), then, by Equation (32),Pi(svσ) = Pi(s)Pi(v)σ ∈ Li (i = 1 or 2). Let

w := Pi(v) ∈ (Σi − Σ0)
∗. Then

Pi(swσ) = Pi(s)wσ ∈ Li

Pj(swσ) = Pj(s) ∈ Lj

These equations implyswσ ∈ L1‖L2. FurthermoreQi is OCC for Li and w ∈ (Σi − Σ0)
∗. Hence we can infer

that w ∈ (Σi −Σ0)
∗ ∩ Σ∗

u. Considering the assumption thatK is controllable with respect toL1‖L2, we can then

conclude thatswσ ∈ K. ThereforeP0(swσ) = P0(s)σ = tσ ∈ P0(K). As we have considered all cases forσ, the

proof of Lemma 4 is complete.

The proof of Proposition 8 is as follows.

(⊇) Let K := sup C(E‖Lm, L) andK0 := sup C0[E∩P0(Lm), P0(L)]. From the definition of the local supervisor

K0, we have

K0 ⊆ P0(Lm) = P0(M1||M2) = Q1(M1)||Q2(M2).

Applying prefix closure, we obtainK0 ⊆ Q1(M1)||Q2(M2). Therefore,

Q1(M1)||Q2(M2)||K0 = K0 = Q1(M1)||Q2(M2)||K0.
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BecauseQi is anMi-observer (i = 1, 2), Proposition 7 implies that

Lm||K0 = M1||M2||K0 = M1||M2||K0 = L||K0.

Moreover,K0 is controllable with respect toP0(L). Using Proposition 6, we conclude thatK0‖Lm is controllable

with respect toP0(L)‖L = L.

BecauseK0 ⊆ E ∩ P0(Lm), we know

K0‖Lm ⊆ (E ∩ P0(Lm))‖Lm

= P−1
0 (E) ∩ P−1

0 P0(Lm) ∩ Lm = E‖Lm.

Since we already know thatK0‖Lm is controllable with respect toL, K0‖Lm ⊆ K.

(⊆) While the condition that theQi areLi-observers (i = 1, 2) implies thatP0 is anLm-observer, the condition

that Qi are OCC forMi (i = 1, 2) does not imply thatP0 is OCC forL. So we cannot directly use the result of

Theorem 2.

To show thatK ⊆ K0‖Lm, we must show thatP0(K) ⊆ K0 and K ⊆ Lm. SinceK ⊆ E‖Lm, we know

K ⊆ Lm and

P0(K) ⊆ P0(E‖Lm) = E ∩ P0(Lm) (33)

Recall thatL = M1‖M2 and Qi is an Mi-observer (i = 1, 2). Proposition 4 ensures thatQi is also anMi-

observer (i = 1, 2). By Proposition 5, we know thatP0 is anL-observer. BecauseK is controllable with respect

to L, P0(K) is then controllable with respect toP0(L) by Lemma 4. Together with Equation (33), it implies that

P0(K) ⊆ K0, which is the key statement for the proof of the second part.

Proof of Theorem 4:

From Equations (9) and (10),

K1||K2||K3||KC = K1||K2||K3||C

K1||K2||K3||KC = K1||K2||K3||C.

Furthermore, Equation (8) yields

KC ⊆ Q1(K1)||Q2(K2)||K3

KC ⊆ Q1(K1)||Q2(K2)||K3.

HenceKC ⊆ R−1(K3) andKC ⊆ R−1(K3), whereR is the natural projectionR : Υ∗

0 → Υ∗

3. We immediately

obtain the following two equations.

K3||KC = KC andK3||KC = KC (34)
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Finally we have

K1||K2||K3||C = K1||K2||KC

K1||K2||K3||C = K1||K2||KC

The proof of Equation (11) is now reduced to the proof ofK1||K2||KC = K1||K2||KC , which will follow

shortly from Proposition 7. The assumption already ensuresthat theQi are Ki-observers(i = 1, 2), so we need

only show

Q1(K1)||Q2(K2)||KC = Q1(K1)||Q2(K2)||KC . (35)

Considering Equation (34), we have

Q1(K1)||Q2(K2)||KC = Q1(K1)||Q2(K2)||K3||KC = KC

Q1(K1)||Q2(K2)||KC = Q1(K1)||Q2(K2)||K3||KC = KC .

Thus Equation (35) must follow and the proof of Equation (11)is complete.

The second part of the proof is for Equation (12). Since we have already shown thatK1||K2||K3||C =

K1||K2||K3||KC , Equation (12) is transformed toK1||K2||K3||KC = supC(E1||E2||E3||Lm, L). The proof of

this equation follows from Proposition 4.2.2 of [33].
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