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Abstract

A flexible decentralized and hierarchical architecture riespnted to reduce computational effort in designing
optimal nonblocking supervisors for discrete-event systéDES). We organize a DES into modular subsystems that
embody internal interacting dependencies. Verificatigraofl coordination among modular subsystems are achieved
through their model abstractions. Sufficient conditions presented to guarantee that coordinators and modular
supervisors result in maximally permissive and nonblogkeontrol. A medium-sized example demonstrates the
computational effectiveness of our approach.
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I. INTRODUCTION

A fundamental obstruction to the developmentsaoipervisory control theorySCT) of discrete-event systems
(DES) [1], [33] is the computational complexity of synttleg maximally permissive and nonblocking supervisors.
Indeed, the nonblocking supervisory control problem forOE NP-hard [7]. In current algorithms, the space (and
time) required are exponential in the number of plant coneptsiand control specifications included in the DES
model. Researchers are therefore seeking effective danéthods for various subclasses of discrete-event systems
that enjoy special structure. Such structure will admitdularity[2], [13], [20], [21], [27] andmodel abstraction8],

[11], [12], [30] to circumvent computing global dynamic medsl. This paper presents a control architecture that
flexibly integrates decentralized and hierarchical cdritvanitigate the computational complexity.

An ideal structure allows a system to be divided into mutuatinconflicting modules; for instance, modules that
share no joint events. To identify more general conditidrat guarantee mutually nonconflicting modules, [10],
[13], [19], [27] introduce various sufficient conditions &msure that the conjunction of modular or decentralized
supervisors is equivalent to the monolithic supervisoedehconditions, however, may fail to hold for many realistic
discrete-event systems. In this paper we seek alternatiwendralized control methods based on weaker conditions.

As is well known, the exponential complexity of supervisesin arises from synchronizing subsystems into a
global system model. To avoid this, Ledetcal. [11], [12] partition systems intmasterandslavesubsystems which
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need not be synchronized for design purposes. Insteadenmgisystems call for services from slave subsystems
solely throughinterfaceswhich pass service requests from masters to slaves, affidneation of services performed
from slaves to masters. As long as master and slave subsystgisfy certain “level-wise consistency” conditions
with respect to their interfaces, the original system isvpldy nonblocking under decentralized control.

The success of the interface-based approach is due to miosteaetion and information hiding. In SCT, model
abstraction of a DES is achieved bycausal reportermap [30], [32], [33], which reports only events related to
external control specifications and relevant plant comptmeThe interface models designed intuitively in [11],
[12] turn out to be model abstractions obtained formally égarting only the start and finish events of subsystem
activity. In this paper we generalize the interface-baggot@ach as a formal method.

To this end, we substitute model abstractions for the caigiubsystems. If two subsystems share only a small
number of common events, their abstractions tend to be saral either verifying the nonconflicting property (if
it holds) or designing @oordinatorto achieve it, may require only modest effort. Loosely stage coordinator is
a decentralized supervisor that does not enforce any gigatral specification but only resolves conflict among
other decentralized supervisors. Crucial to successfudahabstraction is that the reporter map be as coarse as
possible subject to preserving the information needed dtialile representation of the nonblocking property. The
most effective model abstraction operator in SCT is the &lateporter map having thebserverproperty [28],
[30]-[32].

We note that, withstate treestructures [15] andinary decision diagram(BDD) encoding of the constituent
DES, systems with state sizes beyaro#° states have been treated. This suggests that the intenfeltiéeature
combined with BDDs could be especially efficient [23].

In this paper a DES is assumed to consist of a network of siplalet components subject to a conjunction of
modular control specifications. Trshufflesystem structure defined in [5] is an instance. The strucisseimed
in this paper is, however, more general, inasmuch as planpooent alphabets need not be pairwise disjoint and
control specifications are not restrictedtoffersor serversas in [5].

Given a DES control problem with networked structure, owhéectural approach to supervisory control design
is the following.

Step 1. Obtain decentralized supervisors for individuakgfrations using the method introduced in Section IIl.
Because a specification often imposes restrictions inmgleinly a subset of the alphabet of the DES, the decentral-
ized supervisor for a specification can be synthesized ftsrfidcal” plant [2], usually the synchronous product of
plant components that share joint events with the spedditaBuch a supervisor can often be found by inspection.

Step 2. Partition the plant components and decentralize@rsisors into modular subsystems according to
their interaction dependencie€ontrol-flow decompositiof5] is an effective method for selecting subsystems
appropriately. If each subsystem contains only a few plammonents and decentralized supervisors, or admits
simple control logic, we can find its maximally permissivedaronblocking control with only modest computation
or by qualitative reasoning [5]. The main challenge is tatihe interactions among subsystems.

Step 3. Design the model abstraction of each subsystem oaingal observerswhose properties are explained
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in Section Il. Abstraction introduces hierarchy into syststructure, as it reports only the events shared with other
subsystems and conceals the rest. The fewer the reportatsetiee greater state reduction will be achieved.

Step 4. Organize these model abstractions into groups d@iogoto their interconnections. In simple cases, all
the model abstractions will belong to just one group. Forhegmup, check whether these model abstractions
are nonconflicting; if they are not, design a coordinatorasotve conflict by the method in Proposition 7. In the
pleasant circumstance that the system jsaauctsystem with pairwise disjoint alphabets, the method iniSedv/
is applicable.

Step 5. Repeat Steps 3 and 4 by regarding the model abstra@® higher-level plant components and the
groups of model abstractions as subsystems according po25tentil there is only one group in Step 4. The end
result will be a hierarchy of decentralized supervisors aadrdinators. The paper presents conditions sufficient
to guarantee that these decentralized supervisors andipators provide maximally permissive and nonblocking
supervisory control equivalent to the monolithic conall

Section V estimates the computational complexity of theppsed approach and discusses how to apply the latter
effectively. Section VI demonstrates its efficiency apglie a well-known example. The latter suggests that we can
obtain intelligible decentralized supervisors with mimintomputational effort by supplementing the architedtura
approach with control-flow decomposition [5].

Our approach exploits a (more-or-less universal) architecalso utilized in [19]-[21], with the difference that
we do not requirea priori that the modular subsystems be nonconflicting. In fact, dioating these modules to
eliminate blocking is in our view the main challenge and is ptmary objective.

Recently Hill and Tilbury [8] have proposed an incrementarérchical computational approach, which uses
control architecture and model abstraction similar to téper and its precursor [4]. Their approach does not,
however, allow subsystems at the same level to share evBmsresult is a slender hierarchy with more levels.
Furthermore, the supervisors in [8] may combine contrabastfor enforcing control specifications with actions that
resolve system blocking. In contrast, our approach willlteis a greater number of relatively simple decentralized
supervisors: some are dedicated to the given control spatiifns, preferably in one-to-one correspondence, while
others are dedicated only to resolving conflicts. Finalig approach in [8] cannot guarantee maximally permissive

control.

Il. NATURAL OBSERVERS

For a system described by a langudge >* and acausal reporter mag [30], [33], the model abstractiorof
the system is the induced system representing lang@@ge Especially important in SCT are reporter maps with
the observerproperty [30]. While [28] treated hierarchical control mgigeneral causal reporter maps, this paper
will construct model abstractions only withatural observersi.e., natural projectiong[1], [33] with the observer
property. This simplification better matches our more peatperspective. In Section II-A we review the properties
of natural projections that enable compositional companatin Section II-B we state special properties of the

natural observer and present a few applications.
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A. Properties of Natural Projections

Recall [1], [33] the definitions of natural projection and ihverse image function. Standard simple properties
include the following.

Proposition 1: Given event set& and X, C 3, consider the natural projectiaf : ¥* — X§ and four arbitrary
languagesA, B C ¥* andC, D C ¥§. Then

1) P is surjective, i.e., ImP = .

2) P is idempotent, namel? o P = P.

3) P and P! are monotone.

4) Po P! =1, wherel is the identity function or}, and P~1P(A) D A.

5) P and P~! are prefix-preserving, i.eP(A) = P(A) and P-1(C) = P~ 1(C).

6) P(ANB) C P(A)N P(B).

7) P is a morphism of set-union, i.eE(AU B) = P(A) U P(B).

8) P~!is a morphism of set-intersection, i.?1(C N D) = P~1(C) N P~1(D).

9) P~!is a morphism of set-union, i.eR~}(C U D) = P~}(C)uU P~ (D).

Proof: See [3]. ]

Proposition 2: Consider two alphabels;, >», and their intersectiohy := ¥, NY,. Define the natural projections
P (31UXe)" — 87 (i =0,1,2) andQ; : ¥F — X§ (j = 1,2). Extend these natural projections to the
corresponding image functions [16] and denote them wittsdtmae symbols as the functions, i.B;,: 2(>19%2)" _,
2% (1=0,1,2), Qj : 2% — 2% (j =1,2). Then fori,j = 1,2 andi # j,

1) Im P[5 = (Im P;)NX3 = X5, With codomain restricted to its imaggg| P;|X7 is identical to the natural

projection@);.

2) R[S} = Q.

3) P, and P, commute, i.e.PioPj=Q;0P; =FPy=Q;0P =PjoP,.

4) P, and Py commute, i.e.P, 0 Py = Py = Pyo P;.

5) PrloQ@ ' =ry .

6) PoP ' =Q; ' 0Q;.

Proof: See [3]. ]

Proposition 2 is summarized by the commutative diagramsdn F whereX := ¥; U ¥,. Statements 3 and 4
imply that the composition of natural projections is a natprojection whose observable event set is the intersectio
of the observable event sets of the factors. In particutamposition is associative.

Corollary 1: Consider a family of natural projection3 : ¥ — Y7 (i € n). LetX := Xy andT := (), ;.
Define the new natural projectiad : ¥* — Y*. Supposel’; C ¥;4; (i €n—1). ThenQ = P,0P,_10---0P;.

Turning to supervisory control, consider a discrete-eggstem consisting of two components, with languales
over alphabet¥; (i = 1,2). We first recall the definition afynchronous produg83] L;||Ls. Let P; : (X;UX5)* —

¥¥ (i = 1,2) be the natural projections with inverse image functidhs' : 2% — 2(*1U%2)" (; = 1,2). Then
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P P;

L SN s pwr (s+) ——— pwr (=)
P
P, 0 Q1

(P2) Pt Q!
% > ¥ pwr (25) ——> pwr (=)

Q2 (Py) Qj
(a) Statement 3P; o P; = Py = Pj o Py (b) Statement 6P; o ij1 _ Q;l °0Q;

Herepwr(X) = 2%

Fig. 1. Commutative Diagrams for Proposition 2.

Ly||La := Py (La) N Py (Lo).

A string s € Ly||L; if and only if s € (¥; U X2)* and has the property’;(s) € L; (i = 1,2). Lett; :=
P;(s) (i = 1,2). By Proposition 2,P(t1) = P;(t2), namely, stringg; andt, have the same image in their joint
event sett; N X,. This makes clear the form of strings iy ||L». If two stringst; € L; (i = 1,2) contain the
same events ift; N X5 and these occur in the same sequence, theemd ¢, synchronize by merging common
events inX; N X, and arbitrarily shuffling events outside, N 3.

Lemma 1:Define the natural projections; and@; as in Proposition 2 fof = 0, 1,2 andj = 1,2. For any two
languaged.; C 3¢ (i = 1,2) we haveL;||Ls # 0 < Q1L1 N Q2L # 0.

Proof: See [3] and Appendix. [ ]

To obtain an abstraction of the system, we could first comfheesystem’s global behavidr; || L2 and then its
projection. When, however, the shared events of the two oompts are all observable the result is obtained more
economically from abstractions of the components, acogrtth the following (Exercise 3.3.7 in [33]). This result
is central to our method.

Proposition 3: Let L; C 3} (i = 1,2). AssumeX, C ¥ :=%,UXy, P, : ¥* - Xf (1 =0,1,2), Q; : ¥ —
(X, NE0)* (j=1,2). If 21Ny C X, thenPy(L1||L2) = Q1(L1)[|Q2(L2).

Proof: See [3] and Appendix. [ ]

The result is displayed by the commutative diagram, Fig. BeneX 1 := 31 N Xy and Xgg := X5 N Xgy. The

extension to an arbitrary number of synchronized factogrimightforward [24].

B. Observer

Consider a DES described by languagever alphabek.. Given an observable event sub&gt, we can define
the natural projectio® : ¥* — 3§ and then the abstractiaR(L). Since P(L) is obtained fromL throughpartial

observationthe abstraction may remove critical information and b@irsistent with the original DES with respect
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Puwr(X}) x Pwr(Z}) —”—% Puwr((X1 UX2)*)

Q1 Q2 Py

Il
Puwr(Xi,) X Pwr(Xjg)-----=------- > Puwr(3})

Fig. 2. Proposition 3

to controllability and nonblocking. For instance, the paijon of a blocking DES could be nonblocking, so a
nonblocking supervisor designed from the abstractiondcoesult in a blocking supervisor for the original DES.
To avoid this pitfall, one must carefully select the obsetgeevents of a DES.

Fig. 3 displays a natural projection with a “good” selecti9vhenever an observed string, sBys), s € L, can
reach a marker state in the abstracted model via a strin@j, the original system, at string must be able to
reach a marker state from via some stringu € X* such thatP(su) = P(s)t, as illustrated in Fig. 3. Briefly,
what we expect in the observation model is surely realizabtbe original model. If so, a nonblocking supervisor
for the abstracted model is also nonblocking for the origgyatem. A natural projection defined by such a “good”

observable event set is called ahserver{28], [30].

P(s)

Fig. 3. Observer

Definition 1: [Observer [30]] Assume language C ¥* and letY¥, C > be an observable event subset. The

natural projectionP : ¥* — Xf is an L-observeiif
(vt € P(L))(Vs € L) P(s) <t = (Ju € ¥*) su € L& P(su) =t.

&
We call a natural projection with the observer propertyadural observer The symbol< means that the first
string is a prefix of the second one [1], [33]. X, = X or (), P is automatically anL-observer. The observer
concept is equivalent [30] to that afbservation equivalencmtroduced by Milner [17]. An observer is just a
function whose equivalence kernel isgaasi-congruencg3?] of the dynamic system modeled by Denote by

||L|| the state size of theanonical recognizef33] of L. If the natural projectior® is an L-observer, the abstraction

January 10, 2007 DRAFT



P(L) can be computed in polynomial time |fL||, and||P(L)|| < ||L|| [29]. In fact, an arbitrary natural projection
can be modified in polynomial time to be a natural observeridgrging the observable event set [6].

Proposition 4: An L-observer is also aih-observer.

Proof: See [3]. ]

Proposition 4 implies that the requirementdobserver is stronger thalrobserver, because embodies all the
“dynamics” in L together with extra information about marked strings. Téwutt follows easily from Definition 1.

If a system consists of more than one plant component, feanes,L := L,|| Lo, it would be more economical
to check the observer property component-wise without ading the synchronous product first. Proposition 5
presents a sufficient condition for this simplification to \zid.

Proposition 5: Consider two languages; C ¥* (i = 1,2). Define the natural projectionB; : (£; U ¥3)* —
¥ (1=0,1,2), whereXy C ¥, UXs. If 3 NY,; C Xy and for bothi = 1,2, Py|ZF is an L;-observer, therP, is
an L, || Lo-observer.

Proof: See [3] and Appendix. [ ]

Proposition 8 in [31] is a special case wheie N X, = (). Our application of the observer property will be
to guarantee nonblocking control for a partially observestem, according to Theorem 6 in [30]. Replacing the
causal reporter maf} with the natural projectiorP : ¥* — 3§, we can affirm that ifP is an L-observer for a
languagel. C >*, then

(YN C P(L))P"Y(N)NL =P-L1(N)NL. 1)
In particular, if N is a controllable sublanguage for the abstracted mégél), Equation (1) means that its inverse
projection P~1(V) is nonconflicting with the original systerh. Hence N is a nonblocking supervisory control
under partial observation.

If two languaged.; C ¥¥ (i = 1, 2) have the same alphabet, i.E; = X5, they arenonconflicting{34] provided
L1 N Ly =Ly N Ly. For the general case whe¥y # 35, we define

Definition 2: [Synchronously Nonconflicting [33]] Two langgesL; C ¥¥,: = 1, 2, are synchronously noncon-
flicting if L1([L2 = L1 Lo. o

Languaged.; and L, are synchronously nonconflicting if and only#f *(L;) and P, *(L) are nonconflicting,
where P; are the natural projection&; U 33)* — XF (i = 1,2). Similarly, we sayn (> 2) languaged.; (i € n)
are synchronously nonconflicting if they satim = ||_, L;. According to [34], if two language&;, K» C L
are nonconflicting, and each is controllable with respea frefix closed languagé C >*, with 3, C ¥, then
K, N K, is also controllable with respect tb andX,,. Likewise, if K1 and K5 have different alphabets, we have
a similar result on the controllability of their synchrorsoproductK; || K2, as generalized in Proposition 6.

Proposition 6: For i € n, let K; C L; C X! be controllable with respect t&, , C 3; and a prefix closed
languageL;. If the K, are synchronously nonconflicting, theéf_, K, is controllable with respect toJ;"_, ¥; ,,
and ||, L;.

Proof: See [3]. ]
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An observer determines a “reliable interface” for a DES,deethe interaction between two complex DES may
be examined through their projections. I, has the observer property, we can check if two langudgesnd
L, are synchronously nonconflicting by checking whether tpedjectionsPy(L1) and Py(L2) are synchronously
nonconflicting. Since the automaton models Bf(L;) are smaller than those df;, we may save significant
computational effort, in accordance with the following.

Theorem 1 (Synchronously Nonconflicting Criteriohpt L; C X% (i =1,2), andXg 2 X1 N . If Q; : XF —
(X;NXo)* are L;-observersi(= 1,2), thenL,||Ly = L, || Ly if and only if Q1 (L1)[|Q2(L2) = Q1(L1) || Q2(I2).

Proof: Define the natural projectionB; : (X, UX2)* — 37 (i = 0,1,2) andT : 3§ — (X1 N X2)*. Let

R; := P,|¥§ (i = 1,2). These projections are illustrated by the commutative raiag Fig. 4.

Fig. 4. Natural Projections When; N Xy C Yo

(If) We always havel.|[L, = P, '(L1) N Py *(Ls) € Py ' (Ly) NPy '(L2) = Ly || Lo. For the reverse inclusion,

let s € Ly|| L. We must show that there exists a strimge (X1 U Xo)* with su € L;||Ls. Sinces € Li|La,
P(s)e L, i=1,2. 2)
Moreover,Py(s) € Py(L1|/L2). Because of the assumptialy 2 ¥; N 3, and Proposition 3,

Po(s) € Q1(L1)[Q2(La).

By the assumptio): (L1)[[Q2(L2) = Q1(L1) | Q2(L2), we havePy(s) € Q1(L1)[[Q2(L2) = Po(L1[|L2). Then

there must exist a stringe X such thatPy(s)t € Py(L1||Lz2), and therefore
Ri[Po(S)t] S R»L'PO(LlHLQ), 1=1,2.

From Fig. 4, we see thak; o Py = Q; o P; (i = 1,2), and by Proposition 3P;(L1|Ls) € L; (i = 1,2).
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Consequently,
RiPQ(S)Ri(t) = QZH(S)RZ(t) S QZ(Ll)a 1 =1,2.

From Equation (2)P;(s) € L;. SinceQ); is an L;-observer, there exist strings; € ¥ with P;(s)w; € L; and

BecauseR;(P;(s)w;) = QiPi(s)Qi(w;), we haveQ;(w;) = R;(t) (i = 1,2). Applying P; (j = 1,2;j # i) to
both sides of this equation, we get
PjQi(w;) = PiR;(t) = T(2).

According toYy 2 ¥; N X, and Corollary 1,
Pg(’wl) = T(t) = Pl(’wg).

Therefore K := {w }||{w2} is nonempty by Lemma 1. Taking € K, we haveP;(u) = w; (i = 1,2). According
to Equation (3), we have

Pi(s)w; = Pi(s)P;(u) = Pi(su) € L;, i =1,2.

Consequentlysu € L1||Lo, as required.
(Only if): According to the assumption, we know ||[L, = Li|Ls. Applying P, to both sides, we get by

Proposition 3,

Po(L1||L2) = Po(L1]|L2) = Q1(L1)[|Q2(L2),
Py(L1||L2) = Q1(L1)[|Q2(L2).

HenceQ1(L1)[[Q2(L2) = Q1(L1)[|Q2(L2). m

In case the two languagds, and Ly are synchronously conflicting, a third languafg called acoordinator,
must be introduced to resolve the conflict. As in Theorem &,ttlo languages may interact only “locally”, i.e.,
share only a proper subset of events. In that case, insteadroputing the coordinator directly from the two
languages themselves, we perform this computation thrdugih abstractions.

Proposition 7: Let L; C ¥ (i = 1,2), and¥, D £; N Xo. In the notation of Theorem 1, if for= 1,2, Q; is

an L;-observer and there is a languabg C X which satisfies

Q1(L1)[|Q2(L2)||Lo = Q1(L1)||Q2(L2)|| Lo

then L1 [[Ls||Lo = L1|[L2||Lo.
Proof: See [3] and Appendix. [ ]

The coordinatorl, depends only upon the event 88§, which contains the shared events lof and L, and
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defines the required natural observers. As lond.@gan resolve the conflict betwee&m (L1) and Q2(L2), it will

resolve the conflict betweeh; and Ls.

IIl. OPTIMAL NONBLOCKING DECENTRALIZED CONTROL

A decentralized controller monitors and disables only &v@nanobservablesvent subset. Lin and Wonham [14]
found conditions for the equivalence between decentlied monolithic DES control, but considered only
prefix-closed languages and did not address the nonblogkiolglem. Moreover, their conditions are not easy
to check, becausaormality [14], [33] must be verified for the monolithic supervisor. thne previous section we
saw that the observer property is a sufficient condition fmnbiocking decentralized control. We now extend this
to achieveoptimality (i.e., maximal permissivengssThough [28], [30], [31] have studied the counterpart peols
for hierarchical control with a general causal reporter riapatural projection endows decentralized control with
distinct characteristics: more structure is evident arsgd lomputation is necessary.

An optimal supervisor with full observation usually disablthe nearest controllable events preceding or “up-
stream” to a prohibited uncontrollable event éay). If, however, some of these controllable events aobservable,

a decentralized supervisor must disable controllabletevfarther back, and so is more restrictive. For this retstric

to be relaxed, the observable event set must be large enowgintain all the upstream controllable events nearest to
o. Such a decentralized supervisor will prevent the occaeef an uncontrollable event while allowing maximal
freedom of system behavior. A projection with such an olegles event set is calledutput control consistent
(OCC) [35].

Definition 3: [OCC] LetXy, >, C ¥ be the observable and uncontrollable event sets. The Hapuogection
P ¥* — X} is output control consister(OCQC) for the prefix-closed languagk C X*, if for every strings € L
of the form

s=o01--0,0s=580-04 k>1

which satisfies the conditions that terminates with an event ily, 0; € ¥ — ¥ (i € k — 1) and oy, € X, we
have the property thaty, € X, = (Vi € k)o; € 2. O

In the definition, whernr is observable and uncontrollable, its immediately pretgdinobservable events must
all be uncontrollable, namely, its nearest controllablerédvmust be observable. This definition is adapted from
the same concept in [35], where it was defined for generalataeporter maps. References [33], [35] provide a
polynomial algorithm to refine a natural projection to be OQtice that if g = ¥ or (), P is automatically
OCC for L.

We can now state a practical and concise sufficient conditiormptimal nonblocking decentralized control.

Theorem 2 (Optimal Nonblocking Decentralized Contrdlet a nonblocking plant be described by closed and
marked languageg, L,, C ©* with L,, = L, along with observable and uncontrollable event &&s>, C %,
respectively. Suppose the control specificatiofis. ¥§. If the natural projectior? : £¥* — X§ is an L,,-observer
and OCC forL, then

sup C(E|| Ly, L) = sup Co(E N P(Ly,), P(L)) || Lm.-
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Proof: See [3] and Appendix. [ ]
C(E|| L, L) denotes the family of languages that are sublanguagés||@f,, and controllable with respect to
L andX, [1], [33]; sup C(E||Lm, L) is the supremal element of this family and represents thenbehthat the
optimal supervisor with full observation can obtain forshedata. Similarlysup Co(E N P(L,,), P(L)) describes
the decentralized supervisor with partial observationign When this supervisor is synchronized with the plant,
the final controlled behavior is the language on the right sifithe equation. The result of Theorem 2 is displayed

in the commutative diagram, Fig. 5.

supCo(ENe,9)

pwr () > pwr (=)
P Py
supC(El|e, ®)
Lme PWI(s) — > pwr ()

In the diagramP,;*(e) := P~1(e) N Ly,

Fig. 5. Optimal Nonblocking Local Control

We can extend Theorem 2 to Proposition 8 to accommodatensgstemposed from two components.
Proposition 8: Let the plant consist of two nonblocking components with kedrlanguaged/;, C ¥* (i = 1,2).
The marked and closed languages of the plant are fagn= M; | M, and L := M;|| M. Let the observable
event subset b&, O 3; N X, and corresponding natural projectid : (£, U X3)* — X§. Suppose the control

specification isE C 3. If for i = 1,2, Py|X! is an M;-observer and OCC fob/;, then

sup C(E||Lum, L) = sup Co[E N Py(Ln), Po(L)]| Lon.
Proof: See [3] and Appendix. ]
The proposition replaces the languadgs and L in Theorem 2 with the synchronous produdts ||M> and
M, ||Ms. The replacement of,, is justified by Proposition 5, and the new requirement fordheerver property
in Proposition 8 is equivalent to that in Theorem 2. Howetleg, replacement of is more subtle because the new
requirement for the OCC property in Proposition 8 is much keedhan that in Theorem 2. Indeed, whep| X!
is OCC forM; (i = 1,2), P, need not be OCC foi1; || M.
Notice in particular thaf\/; and M> need not be synchronously nonconflicting. Hence it is ptsddy the plant
to be blocking, i.e.L,, C L with strict inclusion. Thanks to Proposition 8, we need reitially compute the global
behavior of a networked system. As long as each componembedy abstracted and the abstraction is properly

controlled, we can achieve optimal and nonblocking corftrothe global system with reduced computational effort.
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When the plant consists of more than two components, egumditveen monolithic and decentralized supervisors
may also hold. In case the plant components iatependentgents (i.e., their alphabets are pairwise disjoint),
they are necessarily synchronously nonconflicting. By agument similar to that for Proposition 8, we obtain
Corollary 2.

Corollary 2: Let the plant consist ofi > 2 nonblocking, and independent components with marked ages
M; C ¥ (i € n). AssumeX; NX; = 0 (¢ # j). The marked and closed languages of the plant are then
Ly, = |7, M; and L := ||_; M;. The alphabet of the plant & := |J;_, &;, with assumed uncontrollable and
observable event subseéis, ¥, respectively. Let the control specification BeC >j. Define the following natural
projections:

Py : ¥ — X

Q; = 1:)0|2;F : E: — (Ez N 20)*, 1 € n.
If for i € n, Q; is an M;-observer and OCC fak/;, then

sup C(E| Ly, L) = sup Co[E N Po(Lm), Po(L)] || Ly,
Proof: See [3]. u

In case the observable event subset is the union of a subkctioh of component alphabets, namely,

20:62¢j,m§n

j=1
where¢ is a permutation [16] of, the conditions in the corollary hold automatically. By tt@rollary the optimal
decentralized control of such a product system depends amlthe components sharing events with the control
specifications. The other unrelated plant components gawple in the control synthesis. This property was pointed

out by Queiroz and Cury [2], and Wonham [33], but Corollaryx2eads it to a more general situation.

IV. CONTROL OFPRODUCT SYSTEMS

Having seen how to synthesize the decentralized superfdasa@ne control specification, one can obtain without
difficulty a group of decentralized supervisors for the &gt of control specifications imposed on the plant. One
must then examine whether there is conflict among these ttatieed supervisors and, in that case, design a
coordinator to resolve it.

In this section, we consider the supervisory control pnoble a plant consisting of. (> 1) nonblockingand
independentomponents (i.e., disjoint alphabets) whose marked lagegpiareM; C XFf (i = 1 € n), with

¥;,NXE; =0 (i # j). The marked and prefix closed languages of the plant areftiiere
Lin = |[i1M; and L = Ly, = [[7_1 M.

The complete alphabet s := [ J;"_; ;.
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For definiteness, consider the following probl88PEC, containing three control specificatiof§ (j = 1,2, 3)
for the product plant, where each; applies only to those plant components whose indices makéheset
N; Cn (j=1,2,3). EachE; could in turn be an intersection of simpler specificationsién(i € N;). Assume
N; € N; (i,5 € {1,2,3};i # j), as otherwise two groups could be combined into one. Theesponding
subsystems have marked languages

H; = ||jen,M;, i =1,2,3.

The subsystem alphabets afe:= |J; v, X, (i = 1,2,3). ThusE; C Y7 (i = 1,2,3).
The nonblocking and maximally permissive supervisory marfbr the system can in principle be computed in
one monolithic supervisor as

K :=sup C(F1||E2||Es||Lim, L). (4)

As indicated in the Introduction, our architectural cohtgpproach attacks the problem in five steps. We illustrate
the procedure through the simple but representative examgfig. 6. Heren = 4, Ny = {1,2}, N, = {3,4}, and
N3 ={2,3}.

(E4CD k)| QK|
e _,:\_
2 M3 Mg

K K
M, M 1 2
(a) Step 1 (c) Step 3
)
(E:/Cy) ()
Ki gey [ 1\ B Ked @
| | | @ | B 8 l_
| | | | | | |
| My M2 |, | M3 Mg | IQl(Kl)J lQ_zf\_z)J
“““““““““ A .
(b) Step 2 Kl K2
(d) Step 4

Fig. 6. Nonblocking Control of A Product System

As shown in Fig. 6(a), Step 1 is to find decentralized supersifor all three control specifications, namely the
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languages

Ki = supC(EiﬂHi,E), 1= 1,2,3. (5)
For simpler representation and implementation, we findr tregluctions [25]C; (i = 1,2, 3) such that
K; = C;||H; andK; = C;||H;. (6)

LanguageC; results fromK; via supervisor reductior{25], [26], which in effect projects out the transition
structure of the plant from that of the supervisor. The réiducalgorithm in [26] can achieve a reduced supervisor
having minimal state size, but the computation generalipaleds time exponential in the state size of the input
supervisor. Since the main theme of this paper is to save atatipnal effort, the general algorithm is not acceptable.
Instead we use the algorithm of [25Wwhich runs in polynomial time but may or may not yield a miainstate
result. This tradeoff is (probably) unavoidable inasmusli2b] showed that the problem of finding a minimal state
reduction is NP-hard. Despite this limitation, the alguomitin [25] often significantly reduces the state size of the
supervisor in reasonable time.

In most cases, the alphabet ©f is smaller than event sét;, i.e., C; C (T})* for someY’, C Y,. Thus more
events may be erased through model abstraction.

SinceE; (j = 1,2) may be the intersection of simpler specifications, eachystes modeled by, or K, may
also be the synchronous product of a group of decentraliapdrsisors. The coordinators of these decentralized
supervisors can be attained by monolithic control or swsigespplication of the five-step procedure, depending on
the state sizes of the subsystems. In addition to the coienegt C5, the two subsystems may also share common
events, although this situation is not reflected in Fig. 6(b)

Rather than verify the nonconflicting property among the¢hdecentralized supervisors, Step 2 organizes the
product system and the decentralized supervisors as tmardtiécal structure in Fig. 6(b). Here the controlled
systems represented B, and K, are considered as two plant components which are furthetatgl by supervisor
Cs.

Using the model abstraction technique, Step 3 checks if théyzt system supervised by the three decentralized
supervisor; (¢ = 1,2, 3) is nonblocking. Since each subsystem is only partiallyteelavith C3, we erase any
events not shared with’s from the models of; and K> through natural observer@, and Q, as specified in
Theorem 3. Then the verification thaf;, K5, and K3 are synchronously nonconflicting is achieved through the
simpler computation oK), (K1), Q2(K>2) and K3, as specified in Fig. 6(c).

Theorem 3:For 3SPEC, let To 2 T3U (Y1 NYe) andQ; : T — (T, N Yo)* (i = 1,2). If the Q; are

K,-observersi=1,2) and

Q1(K1)||Q2(K2)|| K3 = Q1(K1)||Q2(K2)|| K3,

limplemented asupreduce in software XPTCT [33].
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whereK; (i = 1,2, 3) are defined in Equation (5), thety, K>, K3 are synchronously nonconflicting aid || Kz || K5
is the maximally permissive solution to the control problem
Proof: By Proposition 7, we can immediately show that||K,||[Ks = K;||K;|[Ks, namely, theK; (i =
1,2, 3) are synchronously nonconflicting. Consequently the exgstheory of modular control [1], [2], [33], [34]
yields the conclusion
K1[|K2||K3 = sup C(E1 || E2||Es|[ L, L). )

[ |

In case the condition in Theorem 3 fails, i.€; (K1), Q2(K>), K3 conflict, we should proceed to Step 4 to
design a coordinator. The coordinator design for two suiesys is spelled out in Proposition 7. Using the same
idea, we can design a coordination scheme for the three\saapes K; (i = 1,2, 3) of the product system.

In principle, the coordinator for the three supervisors riother supervisor for the new plant composed from
K3 and the abstractions df; and K. The specification for this high level plant is simpli#, because the only
purpose of the coordinator is to resolve the conflict amoegltinee supervisors. This coordination scheme is shown
in Fig. 6(d).

The supervisor for the high level plant is then

Kc = supC(Q1(K1)||Q2(K2)|| K3, Q1(K1)||Q2(K2)|| K3) (8)
Its reduction is languag€ such that

Ko = C|Q1(K1)||Q2(K2)|[K3 )

Kc Cl1Q1(K1)[|Q2(K2)| K3 (10)

The following theorem provides a sufficient condition fongosrvisor recognizing languagéto be a coordinator
for the three modular supervisors.

Theorem 4:For 3SPEC, let Yo 2 T3 U (Y1 NYy) and Py : ¥* — Y§. DefineQ; := R|YF (i = 1,2).
If the Q; are K;-observersi(= 1,2) and forj € n, P,|¥} are OCC for)M;, then the languag€’ defined by
Equations (8),(9),(10) is a coordinator for supervishis(i = 1,2, 3) defined by Equations (5), namely,

K [[K||KG]C = K| K||Ks][C (11)
Ki||Ko||Ks||C = supC(E||E2|Es|| Ly, L). (12)
Proof: See [3], [4] and Appendix. ]

When the component index sets meet the condifignC N; U N», we can replace languad€s in Theorem 4
with its reductionC3, because the plant information embodiedis is already included inK; and K. Then the

implementation ofK from Equation (8) simplifies to

K¢ = supC(Q1(K1)||Q2(K2)||Cs, Q1(K1)||Q2(K2)[|Cs). (13)
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Here supervisoi; is replaced by its reductio@’s. Let the reduction of’;, be C’.

K¢ Q1(K1)||Q2(K2)||C3]|C” (14)

e Q1(K1)[1Q2(K2)|[Cs[[C7 (15)

Thus '’ is the coordinator for the three decentralized supervisors

Corollary 3: For 3SPEC, let N3 C N3 U N». Let C5 C (T%)* be the supervisor reduction df; as defined
by Equation (6),Yo 2 Y5 U (Y1 N T2) and Py : X% — Tg. If By|Y; are K;-observersi= 1,2) and I |X are
OCC for M; (j € n), then the languagé” defined by Equations (14) and (15) is a coordinator for supers
K; (i = 1,2,3) defined by Equation (5), namely,

Ki||Ks||Ks]|C" = K1||Ks||Ks||C7 (16)
Ki||Ks||K3]|C" = supC(E:||Es||Es||Lim, L) (17)
Proof: See [3]. [ ]

One advantage of using this corollary is to compute the doatdr with the reduction of superviséfs. Another
is that the automaton models of the abstractions of supesds; and K may have smaller state sizes. The alphabet
T of supervisor reductio’s is normally smaller thar('s. Hence the observable event & in the corollary is
smaller than that appearing in Theorem 4. More events mayuppressed by the natural projections defined in
this corollary.

Step 5 of the architectural control approach may consistnoiteration of Steps 3 and 4, if necessary. In the
illustrative example in Fig. 6, there are only two model a@stions and we have already designed the coordinator
between them. Hence the computation process for the #lisstrexample terminates at Step 5 without any further
iteration. However, in more complex situations, we regagt@up of already coordinated model abstractions as a
new subsystem, which is maximally permissive and nonblagkat a higher level and find its model abstraction
again. We repeat the verification and coordination methoesemted in this section on these newly generated model

abstractions.

V. COMPLEXITY STUDY

This section naively estimates the time and space comeXi22] of the architectural supervisory control
approach. We first summarize the computational complexitthe fundamental algorithms. Then the time and
space complexities of the control synthesis process peapwsSection IV are estimated and compared with those
of monolithic supervision. Based on the complexity studg, suggest how to apply the approach effectively.

Table 1 lists the computational complexities of the aldguoris [18] employed by the architectural control approach.
The first column lists the algorithms, the second and thiddiroas list the time and space complexities, and the
last column the state sizes of the algorithm outputs. Fopkiity we assume that an upper bound of the state

sizes of the automaton models of plant componéiitsi € n) is M and of the specifications i&.
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TABLE |
COMPLEXITIES OF FUNDAMENTAL ALGORITHMS

Algorithm Time Space Output
T, M; O(MF)  O(MF) MF
sup C(Ei||M;,MT;) | O(M2N?) O(MN) | aMN(a < 1)
P(M;) oY) 0¥y | A< )
Compt. M;-observer| O(M?) O(M) M(A<1)
Compt. OCC forM; | O(M?) O(M) M

An algorithm that extends the observable event set of a alapmjection to produce a natural observer is
presented in [6]. That algorithm can also obtain an automatodel of the projected language using the natural
observer; this model will have no more (in general, feweatest than the input language [29]. An algorithm to
modify a natural projection to be OCC can be adapted from therithm in Section 5.5 of [33].

We first estimate the complexity of monolithic supervisidhe monolithic supervisor for the control problem in
Section IV is obtained by Equation (4). Accordingly, we néecdtompute the synchronous product of all the plant

components and the specifications. The complexity is
Time: O(M*"N°®), Space:O(M"N?), Final Result:a,,, M™N? (18)

Herea,, < 1 is a case-dependent coefficient determined by the tranditiactions of the plant and specification
models.

Next we estimate the complexity of the architectural cdnéqoproach proposed in Section IV. Suppose the
component numbers in the three subsystéfng = 1,2, 3) arek; := ||V;||( = 1, 2, 3), respectively.

At Step 1 we compute the decentralized supervidérs(i = 1,2,3) by Equation (5). For that, we need to

compute the subplantd; (i = 1,2, 3). The computation for one subplant is
Time and Space®(M"*), Final Result:M*:.
Then the computational complexities for decentralizedesuviporsK;(i = 1,2, 3) are
Time: O(M?* N?), Space:O(M* N), Final Result.o; M* N (19)

Similarly o, ande; <1 (i = 1,2, 3).

At Step 2, we organize the plant and three decentralizedrgigpes into subsystems. To this end we represent
the interconnection relationships of the product system lgyaph, for instance, @ontrol flow nef{6], and partition
the graph. By graph theory the algorithms are polynomiah@artumber of nodes, which is also the number of plant
components:. Compared with the time and space used for other steps, thelegity for Step 2 is negligible.

At Step 3 we verify using Theorem 3 whether the three deckrgchsupervisors are synchronously nonconflicting.

The key to using this theorem is to find an event®Bgtsuch that the natural projections used in Theorem 3 have the
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observer property. Since Theorem 4 also requires that thealgrojections based cifiy have the OCC property,
we must ensure thaf, meets this requirement as well.

The OCC property should be checked first, for which the coatprial complexity is
Time: O(nM?), Space:O(M), Final Result:M/ (20)

Then the event set that guarantees the OCC property shouddilbeged to achieve the observer property. Based

on Table |, the computations take
Time: O(af M** N*) = O(M** N*), Space:O(M"*:N)

Meanwhile, the algorithm for achieving the observer propeill obtain the automaton models &f; (K;) (i = 1,2).

The two models have state sizes
Final Result\;a; M¥ N, i = 1,2. (21)

Here); <1 (i = 1,2), because when the natural projection has the observerngypie state size of the projection
model is never greater than that of the original model.

We then compute the synchronous productf K1), Q2(K>), K3 and check if the result is nonblocking; this
requires

Time and Space@(\ Apajap M HF2 R N3) — O(M™N?),
Final Result:\; \sovy a3 M N3

whereas < 1 is a coefficient determined by the transition functions @& three languages.

If the result fails to be nonblocking, we proceed to step 4ésigh the coordinatoK~ by Equation (8).

Time: O\ \2a3a3ai M?"N%) = O(M>*"N°Y),

Space:O(M \aajazazsM™N?) = O(M"N?),

Final Result:\; \aaqasazaya M N3 (22)

whereay < 1 is determined by the algorithm computing the supremal cdlatile sublanguage.
The total time complexity of the architectural control apgch is then

3
O[Z(Mkl 4 MQkiNQ) +M4k1N4 4 M4k2N4 _"_nMQ
i=1

+MnN3 + M2nN6] — O(M2nN6)

Since space is reusable, the space complexity of the wholeeps is determined by the most costly step, i.e.,
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the last. The space complexity is thex{M ™ N3).
On comparing the time and space complexities of the ardhitelccontrol approach with those of the monolithic

approach given in Equation (18), we conclude as follows.

1) The complexity bounds of our design approach are stiloegptial in the number of plant components and
control specifications. Hence the approach will in genetithllze afflicted by state explosion.

2) The complexity is reduced by the coefficients and A;. In favorable cases, the product of a sequence of
these coefficients might be small, significantly reducing tomputational workload.

3) Because the coefficients are determined by the transition functions of the plant amatrol specifications,
we have no way to decrease them. We can, however, affect the #aeach)\; and the total number of them
through our partition of the system.

4) To increase the total number of coefficientswe should divide the given system into more subsystems. In
the model abstraction of these subsystems, each one wittilbote a coefficient\.

5) To decrease the value of each coefficianthe observable event sets of the natural projections dhioel
small.

6) The two options above are mutually countervailing. If aigian results in too many subsystems, many control
specifications might interact with the subsystems. Eaclsystbm must then have a larger observable event
set. Conversely, if the system is organized into a small remal) subsystems, one subsystem must contain
more control specifications and larger computational efoconsumed within each subsystem. A judicious

trade-off must be chosen between them.

VI. EXAMPLE: AGV SYSTEM

We apply the proposed approach to the decentralized sgpeywontrol of a system of automatic guided vehicles
(AGVs) serving a manufacturing work cell. The example isnirfe], as augmented in [33]. In [4] we gave a
solution to this example, remarking that we had obtainedh#lgr solution with less computation on combining
the architectural control approach witlontrol flow decompositiariThis section elaborates the better solution.

The system consists of two input stations IPS1 and IPS2 fds jpd types 1, 2; three work stations WS1, WS2,
WS3; one completed parts station CPS; and five AGVs (Al, .5), Ahe AGVs travel around fixed circular routes,
on which they are loaded and unloaded by stations and maghaseshown in Fig. 7. A detailed description can
be found in [33], Section 4.7.

Corresponding to the five AGVs, the plant model consists @& &utomataA; with alphabets; (i =1,...,5).
There are totally eight automaton models for the controt#jgations. Four Z;,i = 1,...,4) stand for the zone
restrictions, threeWS;,i = 1,...,3) for the operational constraints in work stations, and oreS) for the
restriction about the common loading area between IPS1 B68@.1Events and state transition diagrams of the
automata can be found in [33], Section 4.7.

The control-flow netof the AGV example is shown in Fig. 8(a). Note that the origishefinition of specification

WS1 in [33] does not meet the requirements obufer defined by Definition 3 in [5]. WS1 can, however,
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WS2

WS3

CPS

—: Direction Loaded
-..>: Direction Unloaded
o: Parking Location

Fig. 7. An AGV System

be replaced by two automata that both satisfy the buffer tiefin that is, WS1 = WS13||WS14. The state
transition diagrams of the three automata are shown in Fig. 9

As prescribed in Section 1V, we first design the decentrdligepervisors of the eight specifications, which can
be found in [33], Section 4.7. The state sizes of the nine meakzed supervisors are listed in Table 1.

TABLE I
DECENTRALIZED SUPERVISORS

Spec  Sup (State#) Spec  Sup (State#)
Z, ZR, (2) Zs ZR» (2)
Zs ZR; (2) Z, ZR, (2)

WS35 WRi5(2) | WS WRy,(2)

WS, WR; (2) WS WR; (2)

IPS IPR (2)

While the synchronous product of the first eight decentedlisupervisors for control specificatiods (i =
1,...,4) andWS; (j = 1,2, 3) is nonblocking, conflict arises when we introduce the sugenfor |PS. Hence
we must design a coordinator to resolve the conflict. Thedinator obtained in [33] was a natural projection of the
monolithic supervisor (4406 states) for the full AGV systefdfiter projection of irrelevant events, the coordinator
for this system was finally an automaton with 29 states. Thig@ach, however, required the (complex) computation

of the monolithic supervisor. In the following, we show howist can be avoided.
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23 13

Z;
A; A A2 53 IPS 10 A
IPS 28 12
Z;
42 34
A4 A3 A4 A3
46 32
WS 14 WS 13 WS 14 WS 13
50 50
) -
(a) Before Reduction (b) After Reduction
Fig. 8. Control-Flow Nets of AGV
32 46
32 46
* N m m
50 50 50
(a) ws1 (b) WS13 (c) wsi14

Fig. 9. Redefinition of WS1

By Proposition 3 in [5], the decentralized supervisors farfour zones, Z1 to Z4, amelevantto the nonblocking
property. In other words, if we find the nonblocking supeuvisf the remaining system, it must be synchronously
nonconflicting withZR, to ZR,4. We therefore ignore the four decentralized supervisothéncoordinator design
and simplify the control-flow net in Fig. 8(a) to the net in FB(b). The structure in the simplified net is very
clear. There are two processing paths: Al, WS2, A3, WS13, ke right and A2, WS3, A4, WS14, A5 on the
left. The two processing paths share one output machine AStlagir input machines share the server resource
IPS. Hence the control-flow net of the AGV example has thellghreonnection identified in [5].

The right-hand path, A1, WS2, A3, WS13, A5, determines a ystbsn Sub; with 140 states. The left-hand
path, A2, WS3, A4, WS14, A5, determines subsysfg&ab, with 330 states.

To apply Corollary 3, we find the events shared between thesmasystems. Lel;, T, be the alphabets of
Sub;, Subs, respectively. Evidently they share vehicle A5 at the buottae., T, N Ty = ¥5. At the top, vehicles
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Al and A2 are connected via the decentralized supervisopediicationIPS. The state transition diagram of the
decentralized supervisor is shown in Fig. 10. Let the alphabthe supervisor in Fig. 10 B¢} := {11, 13, 21, 23}.
According to Corollary 3, the observable event ¥gt must be such thaly 2 T4 U (T NYy).

11,21

4

13,23

Fig. 10. Decentralized Supervisor BPS

Using the algorithm in [32] or [6], we determine th#ly = Y5 U (T; N Ty); furthermore the natural projection
Py : 35 — Y{ enjoys theL,,(Sub,), L,,,(Subs)-observer and OCC properties.

Projecting the two subsystems to event ¥gt we get their abstractions,
Int; := Py(Sub;) (30 states
Int, := Py(Sub,) (30 statey
The synchronous product of the two abstractions and thentiadieed supervisor in Fig.10 isldockingautomaton.
IntIP := Int||Int:|[IPR (171 statep

Using Corollary 3, we can find a coordinator flartIP, CR with 7 states, as in Fig. 11. The most costly computation

in this process is foBubs, which has only 330 states.

11,21,51 11,2151 11, 21,51

11,21,51

Fig. 11. CoordinatoiCR

Not only does the new coordinator have smaller state sizat aiso reveals the principle for eliminating blocking.

Event 11 must be disabled at state 5 where event 13 occurs thoee times than event 23, namely subsystem
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Sub; contains three more parts th&ub,. Dually, event 21 must be disabled at state 6 where event 28rec
three more times than event 13, namely subsysterh, contains three more parts th&ub; .

We provide a more transparent summary of the control actidriee coordinator. Deadlock arises in the AGV
system when the vehicles and the work stations in one pathgi8(B) are all full, whereas the vehicles and the
work stations in the other path are all empty. For illustatisuppose that WS1, WS2, Al and A3 are full of type
1 parts, and Al stops at the input station IPS1, while WS1, W&3and A5 do not carry any type 2 part. In
this scenario, work station WS1 cannot produce any complate because of the lack of a type 2 part. Moreover,
the type 2 part needed by WS1 cannot enter the system, bed@usannot reach the input station IPS2 owing to
specificationl PS. Similarly, deadlock arises when WS1, WS3, A2 and A5 are diltype 2 parts, and A2 stops
at the input station IPS2, while WS1, WS2, Al and A3 do notycamy type 1 part. The control action of the

coordinatorCR prevents the occurrence of both scenarios.

VII. CONCLUSIONS

Although the synthesis of an optimal and nonblocking suigervgenerally demands exponential time, we may
often avoid the worst case and design the supervisor usirtylaGty and model abstraction. A networked discrete-
event system should, if possible, be divided and organiaexisubsystems based on the dependency relationships
among plant components and control specifications. Thisrdposition will impose a hierarchical structure on the
networked system. We independently compute the supesvidathe low level subsystems without regard to their
mutual conflict. Subsequently we design coordinators fes¢hcontrolled subsystems by high level supervision
of them. To reduce computational complexity, we computettigh level coordinators based only on abstracted
models of the controlled subsystems. Effective and carsishodel abstraction is accomplished through natural
projections with the observer and OCC properties.

The contribution of this paper is a practical supervisorptom design approach that is capable of achieving
maximally permissive and nonblocking control with decelited supervisors. Thanks to distributed computation
and information hiding, the architectural approach to oandesign is not only computationally efficient, but can

also produce intuitively understandable supervisory ralets.
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APPENDIX

SELECTED PROOFS

Proof of Lemma 1:

(=) Since L1|| L2 # 0, there exists some string € L1||L2. ThenP;(s) € L; (: = 1,2). Applying natural
projections@; and @, respectively to both equation§);Pi(s) € Q1L and Q2P>(s) € Q2Ls. Because of
Statement 3 of Proposition &), P;(s) = Fy(s) (i = 1,2). Hence the above equations impBs(s) € Q1L and
Py(s) € Q2Lo. ThereforePy(s) € Q1L1 N Q2L and Q1L N QoLs # 0.

(<) SinceQ1L; N Q2L> # (), we can select a stringe Q1L N Q2 Lo, of form

t=0901--0n, n>0,00=¢€0; €Yy, i En

Note that ifn = 0 string ¢ is just the empty string. Hence there must exist strings € L, ands, € Lo such that

Q1(s1) =t = Q2(s2), having the form

S1 = UQOLULUp—1On Uy, U € (81 —X0)", i €{0,...,n}

S9g = VgO1V]1* ' VUp_10pUn, U; € (22 —Eo)*, xS {O,...,?’L}.
From s;, s we can construct a new string
W= UgVYO1 UL VL *** Up_1Vp_1Op Un Up.
Evidently, Pl(w) =UGOL UL Up_10p Uy, =81 € 11 andPg(w) =VgOLV1 " VUp_10p Uy = So € Lo. Therefore

w € L1|| Ly and hencel|| Ly # 0. ]

Proof of Proposition 3

The proof needs the following lemma.

Lemma 2:Let L; C ¥F (i = 1,2). Let &y := ¥; N X,. Define natural projections as in Fig. 1 (a). Then for
i,j=1,2andi # j, Pi(L1||L2) = L; 0 Q; ' Q;(Ly).
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Proof: (Q)
Py(L1||Ly) = Py(P7 'Ly N P Ly) ©€ PP (Ly) N PPy (Ly), 4,5 = 1,254 # 5.

By Statement 6 of Proposition 2, we then haReP, ' (L:) N PP, (L) = Li N Q; ' Q;(Ly).
(D) Lets € L;NQ;'Q;(L;). Thuss € Ly, s € Q;*Q;(L;), and

Qi(s) € Q;(Ly). (23)

Define the languag&’ = {s}|L; = P;"'{s} N P, '(L;). Sinces € L;, K C L1| L,. Based on Lemma 1 and
Equation (23), we knowX # (). For any stringt € K, we havet € L,| L, andt € P, '{s}. HenceP;(t) = s.

Therefores € P;(L1||L2) as required. [ |

Returning to the proof of Proposition 3, we bring in the natiprojections defined in Fig. 4. LR, := P;|X§
anin = P0|Zr (Z =1, 2)
It is straightforward to show thaly(L1||L2) C Q1(L1)||Q2(L2). Actually, by Propositions 1 and 2,

Py(Li||L2) = Po(P{'(Ln) NPy ' (L2)) C PPy (L) N PoPy ' (La)
= R{'Qi(L1) N Ry 'Qa(La) = Q1(L1)[|Q2(Lo).
Conversely let string € Q1(L1)||Q2(L2) C Z§. ThenR;(s) € Q;(L;) (¢ = 1,2). We define languag&” as
K := Py sy N Py (Ly) N Py Y(Lo) = {s}|| L] L2

Since synchronous product is associative and commut&@8leX = ({s}||L1)|[({s}||L2). LetK; = {s}||L; (i =
1,2). Because € ¥, thenk,; C (XoUX;)* (i = 1,2). The joint event set oy and K3 is (ZoUX;)N(ZgUXs) =
Y. To prove thatK # (), by Lemma 1 we need to calculaf®(X;) and Py(K>). Since{s} C Xf, we compute
Py(K;) (i =1,2) by Lemma 2:

Po(K;) = Po({s}l|Li) = {s} N R Qi(Ly), i = 1,2. (24)

According to the assumption thate Q(L1)||Q2(L2), Ri(s) € Q;(L;) and hences € R;'Q;(L;) (i = 1,2).
Therefore Equation (24) yield& (K;) = {s} (¢ = 1,2). This result mean&,(K;)NPy(K>3) = {s} # (. According
to Lemma 1,K = K ||K» # 0.

By the definition of languagé’, we know thatl’ C Py '{s} andK C L;||L,. Let stringt € K. ThenPy(t) = s
andt € Lq|| L. Consequently € Py(L1]|L2) andQ1(L1)||Q2(L2) C Po(L1||L2). [ |

Proof of Proposition 5:

According to Fig. 4, leQ), := Fy|¥; andR,; := F;|S§ (i = 1,2). Lett € Py(L1||Lz2), s € L1|| L2, andPy(s) < t.

To justify the statement, we must find a stringe (31 U ¥,)* such thatsw € L |/ Ly and Py(sw) = t.
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Since it is always true thak, | Ly C L1||L2, s € L1/ L. Consequently, foi = 1,2,
Ri(t) € RiPy(L1||L2) = Q;Pi(L1||L2) € Qi(Ls)
and P;(s) € L;. BecauseP,(s) < t, we can applyR; on both sides, to get

R;Py(s) = QiP;(s) < Ri(t).

Now that R;(t) € Q.(L;), Pi(s) € L;, we can conclude by the hypothesis of the proposition thatis an
L;-observer, so
(Fu; € E7)Pi(s)u; € L; (25)

and
Ql[(Pl(s)uz] = Ri(t), 7= 1, 2. (26)
Apply P; (7 =1,2;5 # 1) on both sides of Equation (26) to get
PilQi((Pi(s)us)] = P;Ri(t)
Pi[QiPi(s)Qi(us)] = T()

According to Corollary 1,P;Q;P;(s) = P1P»(s) and P;Q;(u;) = P;(u;). Hence the preceding equation shows
that
P1P2(S)P1 (’U,g) = T(t) = P1P2(S)P2(U1) = P (’U,g) = Pg(ul).

Recall thatu; € ¥}. Then we conclude by Lemma 1 thgt; }||{u2} # 0. Supposey € £ with
Py(s)v =t. (27)

Let X := ({u1}||[{u2})||{v}. We already know thafwu;}||{us} is nonempty. Hence we should further prove
that v € Py({u1}|{uz}) to establishX # 0. Applying R; (: = 1,2) on both sides of Equation (27), we get
R;Py(s)R;(v) = R;(t) and hence); P;(s)R;(v) = R;(t) (¢ = 1,2). Comparing this result with Equation (26), we
obtain R;(v) = Q;(u;) (i = 1,2). Thereforev € Q1{u1}||Q2{uz2}. By Proposition 3y € Py({u1}|[{uz}). Then
by Lemma 1,X = ({u}[[{uz})[[{v} # 0.

Taking any string from set X, say € X, we see immediately tha® (w) = v and P;(w) = u; (i = 1,2). Insert

these equalities into Equations (25), (27), to get
P,L(SU)) € L’Lv 1= 1727

and Py(sw) = Py(s)Po(w) = Py(s)v = t. Thereforesw € L;|| L2 and Py(sw) = t. ThusP, is an L, || Ly-observer.
|
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Proof of Proposition 7:
Let L := Q1(L1)]|Q2(L2)|| Lo. Then we have

Ly = Qu(L1)[1Q2(L2)[[ Lo = Qu(L1)||Q2(L2)||Zo.

Consequently,
La||La|| L = (L1]|Q1(L1))[|(L2]|Q2(L2))|| Lo = La||La||Lo-

and similarly,Z; |[L||L{, = L1 |[L2||Lo. The proposition is now reduced to showing tiat| Lo |[L), = L, ||L2||L}.

We first show thaf; and L, are each synchronously nonconflicting with. Fori = 1,2, sinceQ;(L;)|| L = Lj
and Q;(L;)||L}, = L, we can claim tha,(L;) and L}, are synchronously nonconflicting, i.e;(L;)||L{ =
Qi(L_i)HL_g. According to the assumption th&); is an L;-observer, Proposition 1 ensures tHat and L{, are

synchronously nonconflicting, i.e.,

LillLy = Li||Lj, i = 1,2. (28)

Let J; := L;||Lj € (X; UXg)* (i = 1,2). By Proposition 5,P is then also a/;-observer. Because synchronous

product is associative and commutative,
La||L2|| Lo = (Lo Lo)I[(L2ll Lo) = 1| Ja-

Next we show that/; and.J; are also synchronously nonconflicting. SingeC (2; U Xo)* (i = 1,2), the joint

event set betweer; andJ; is thenX,. By Proposition 3,
PoJi = Po(LillLy) = Qi(Ls)|| Lo = Lo, i = 1,2.

HencePyJ; N Py Jy = L. Similarly by Equation (28),

PoJi = Po(Li[|L) = Po(Lil|Lh) = Qi(La)|| Ly = L, i = 1,2.
ThereforePyJ, N PyJs = PyJ; N PyJs. The equation demonstrates that/; and Py.J, are nonconflicting. Since
Py is aJ; and.Jy-observer, we conclude thag and.J, are synchronously nonconflicting, namely||.Jo = J; || Jo.
Using the definition ofJ; (i = 1,2) in the above equation and applying Equation (28), we BgtLs|L; =
1| s T, -

Proof of Theorem 2:

For this we introduce a new lemma.

Lemma 3:Let L and X be prefix closed languages over the alphabieand let X C L. Suppose language
K C X is controllable with respect t&,, C ¥ and L. If the natural projectionP : ¥* — Xj is an X-observer
and is OCC forL, then P(K) is controllable with respect t&(X) and%,, N 3.

Proof: Lett € P(K), o € £, N Yy andto € P(X). There must exist a string € K with t = P(s). We
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selects so that

t=¢ — s=c¢ (29)

t#e = (Vs' <s)P(s') <t (30)

BecauseP is an X-observer, there is a string € ¥* with sv € X and P(sv) = P(s)P(v) = tP(v) = to.
Hence we can find a string € (£ — 3y)* such thatv = uo.

Becauser € ¥, N3, and P is OCC for L, we know from Definition 3 thai € 7. Since K is controllable
with respect toL, suc € K and P(suo) = to € P(K).

The procedure above shows that

P(K)(3, NXo) N P(X) C P(

~

This means thaP(K) is indeed controllable with respect (X ), as required. [ |

The proof of Theorem 2 is as follows.
(D) Let Ky := supCo[E N P(Ly,), P(L)] and K := supC(E|| Ly, L). SincesupCo[E N P(Ly,), P(L)] C
E N P(Ly,), there follows
Kol|Ln € [ENP(Ly)|||Lm =P 'ENP(Ly)] N Ly
= P YE)NP 'P(Lyn)N Ly = E||Lp,. (31)

Next we show thatKy|| L., is controllable with respect td. By its definition, Ky C P(L,,). Since we assume

that P is an L,,-observer, Theorem 1 implies

Kol[Lim = Ko|[Lm = Ko || L,

namely, Ky and L,,, are synchronously nonconflicting.
BecauseK, is controllable with respect t&#(L), Proposition 6 implies thak|| L., is controllable with respect

to P(L)||L = L. Using Equation (31), we conclude
Ko||Ly, = supCo[E N P(Ly,), P(D)]|| Lm € supC(E|| L, L) = K.

(S) To prove thatK C Kyl| L., it suffices to prove thaP(K) C Ky and K C L,,. As the latter inclusion is
evident, we need only prove the first statement. SiAc€ E||L.,, Proposition 3 impliesP(K) C P(E|/ L) =
ENP(Ly).

Using Lemma 3 we can also show thatK) is controllable with respect t& (L), becauseP is an L-observer

and OCC forL. Now thatP(K) € Co(E N P(L,,), P(L)), there follows

P(K) C Ko = supCo(E N P(Ly,), P(L)).
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Proof of Proposition 8

Lemma 4:Let L; be two prefix-closed languages over alphaBet(i = 1,2) and letX C L,||L» be a third
prefix-closed language. Suppose languag€& X is controllable with respect t&,, C 3, U3, and Lq||L2. Let
the observable event set big D ¥; NY,. Refer to the natural projections defined in Fig. 4P}fis an X -observer
and@; is OCC forL; (i = 1,2), then Py(K) is controllable with respect t&, N X, and Py(X).

Proof: Lett € Py(K),o € ¥, N, andto € Py(X). We will show thatte € Py(K). First, there exists a

string s € K such thatPy(s) = ¢ and s satisfies Equations (29), (30).

Sinceto = Py(s)o € Py(X) and Py is an X-observer, there is a string € (X; U X3)* such thatsu € X and
Py(su) = Py(s)o. Clearly Py(u) = 0. Hence there is a string € (X1 U X2 — ¥¢)* with u = vo andsvo € X.

If 0 €3, N3 NEg, thenPi(svo) = Pi(s)P;(v)o € Pi(X) (i =1,2). BecauseX C L||Lo,
Py(X)C Pi(L1||L2) C L;, i =1,2. (32)

ConsequentlyP;(s)P;(v)o € L; (i = 1,2). Evidently P;(s) € L;, Pi(v) € (£; —X0)*. SinceQ, is OCC forL; and
o€ X, N, Pi(v) € (X;NY,)* (i =1,2). Thus we can infer that € ¥*. Becauses € K, svo € Ly||Ls, and

K is controllable with respect td; || Lo, we havesve € K and Py(svo) = Py(s)o = to € Py(K), as required.

If o € 2, NEgNXE; —%; (i #j), then, by Equation (32)P;(svo) = Pi(s)P;(v)o € L; (i = 1 or 2). Let
w:= P;(v) € (3; — Xp)*. Then
P;(swo) = Pi(s)wo € L;

Pj(S’LUO') = Pj(S) S Lj

These equations implywo € Lq|| L. Furthermore; is OCC for L; andw € (X; — ¥g)*. Hence we can infer
thatw € (X; — Xo)* N X%. Considering the assumption th&t is controllable with respect té|| L2, we can then
conclude thatwo € K. ThereforePy(swo) = Py(s)o = to € Py(K). As we have considered all cases égrthe

proof of Lemma 4 is complete. ]

The proof of Proposition 8 is as follows.
(D) Let K := sup C(E||Ly,, L) and Ky := sup Co[ENPy (L), Po(L)]. From the definition of the local supervisor
Ky, we have
Ko C Po(Lm) = Po(My[|[M2) = Q1(My)]|Q2(M>).

Applying prefix closure, we obtaity C Q(M;)||Q2(M-). Therefore,

Q1(M)]|Q2(M2)|| Ko = Ko = Q1(M1)]|Q2(Mz)||Ko.
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Because)); is an M;-observer { = 1, 2), Proposition 7 implies that

L[| Ko = My||Mz[|Ko = M|[Ms|[Ko = L|[Ko.

Moreover, K is controllable with respect t&,(L). Using Proposition 6, we conclude th&y||L,, is controllable
with respect toPy(L)||L = L.
BecauseK, C E N Py(L,,), we know

KollLm € (E N Po(Lm))|| L
= Py (E) N Py Py(Lim) N Ly, = E|| Ly,

Since we already know that||L,, is controllable with respect td, Ky|L,, C K.

(S) While the condition that th€); are L;-observersi= 1, 2) implies thatP, is an L,,-observer, the condition
that Q; are OCC forM; (i = 1,2) does not imply that?, is OCC for L. So we cannot directly use the result of
Theorem 2.

To show thatK C Kjyl||L.,, we must show thaf’(K) C Ko and K C L,,. SinceK C FE|L,,, we know
KCL,, and

Po(K) € Po(E|[ L) = E N Po(Lim) (33)

Recall thatL. = M;||M, and Q; is an M;-observer { = 1,2). Proposition 4 ensures th&}; is also anM;-
observer { = 1, 2). By Proposition 5, we know thaf, is an L-observer. Becaus& is controllable with respect
to L, Py(K) is then controllable with respect t8 (L) by Lemma 4. Together with Equation (33), it implies that
Py(K) C Ky, which is the key statement for the proof of the second part. ]

Proof of Theorem 4:
From Equations (9) and (10),
K1||Ks||Ks|| Ko = K1|| K| |Ks]|C

Ki|[Ka||Ks|[Ke = Ki|[K2|[Ks][C.

Furthermore, Equation (8) yields
Ko C Q1(K1)[|Q2(K2)|| K3

Ko C Q1(K1)||Q2(K2)|| Ks.

Hence Ko C R™1(K3) and Ko € R™(K3), whereR is the natural projectio? : Ti — Y5. We immediately

obtain the following two equations.

K;||[Kc = Ko andK;|[Ke = Ko (34)
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Finally we have

Kq || Ko |[K][C Ky ||Kq||Kc

Ki||K2||K3][C = Ki|lKa|[Ke
The proof of Equation (11) is now reduced to the prooffof[[Ks[[Kc = Kq||Kz||Kc, which will follow

shortly from Proposition 7. The assumption already enstirasthe(; are K;-observergi = 1,2), so we need

only show

Q1(K1)[|Q2(K2)[[Ke = Q1(K1)[|Q2(K>)|[Ke- (35)
Considering Equation (34), we have
Q1(K1)[|Q2(K2)||[ Ko = Q1(K1)||Q2(K2)|| Ks||[Ke = Ko
Q1(K1)[|Q2(K2)|[Kc = Q1(K1)||Q2(K2)|[ K| [Ke = Kc.

Thus Equation (35) must follow and the proof of Equation (iklfomplete.
The second part of the proof is for Equation (12). Since weehalready shown thaf;||Ks||K;5||C =
K1||K;||K3|| K¢, Equation (12) is transformed t || K| |K3|[ K¢ = sup C(E1||Es||E3|| Ly, L). The proof of

this equation follows from Proposition 4.2.2 of [33]. ]
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