
Computationally Efficient Supervisor Design: Abstractionand Modularity

Lei Feng, W.M. Wonham
Department of Electrical and Computer Engineering

University of Toronto, Toronto, Canada
fenglei, wonham@control.utoronto.ca

Abstract— A flexible modular and hierarchical structure is
presented to reduce computational effort in designing optimal
nonblocking supervisors for discrete-event systems (DES). The
structure organizes the system into modular subsystems that
embody internal interacting dependencies. Verification and
coordination among modular subsystems are achieved through
their model abstractions. Sufficient conditions are presented
to guarantee that these coordinators and modular supervisors
result in optimal nonblocking control. A medium-sized example
demonstrates the computational advantage of our approach.

I. I NTRODUCTION

Since the nonblocking supervisory control problem in
the RW framework [18] is NP-hard [4], [10], research is
best directed to efficient solutions for various subclasses
of discrete-event systems that enjoy special structure. Such
structure enables us to exploitmodularity [8], [11], [12],
[14] andmodel abstraction[6], [7], [16] so as to circumvent
computing global models.

This paper presents a flexible modular and hierarchical
structure that has been found effective in reducing the
computational complexity of control synthesis. The structure
organizes the plant components and local modular super-
visors into weakly dependent (ideally, uncoupled) subsys-
tems according to their interacting dependencies. If conflict
(blocking) arises within a subsystem, we design a coordinator
of the modular supervisors within each subsystem, with
relatively small effort provided each subsystem is much
smaller than the original system.

To verify the nonconflicting relation among subsystems,
criteria using structural properties [8], [14] rather thanbrute-
force computation have been proposed. As these structures
are not universal, computational verification and coordina-
tion [17] of the modular subsystems are often inevitable. To
reduce computational complexity, we use proper abstractions
of these subsystems instead of the original models. Viewing
these model abstractions as high level plant components,
and the related local modular supervisors as high level
specifications, we may resolve blocking (if any) through
control synthesis for the high level control problem.

Repetition of this process leads to a hierarchy of local
modular supervisors and coordinators. The paper presents
sufficient conditions to guarantee that these modules result
in optimal nonblocking control, i.e., their synchronization is
equivalent to the monolithic controller. Methods for selecting
subsystems appropriately are discussed in the companion
paper [3].

The paper exploits the same DES structure as that in [11],
[12], but with the fundamental difference that we do not
assumea priori that the modular subsystems are noncon-
flicting. Coordinating these modules to eliminate blockingis
our primary objective.

The paper is organized as follows. Section II introduces
fundamental properties of thenatural projectionand theob-
server. Section III presents a sufficient condition for optimal
nonblocking local control with partial observation. A group
of such local modular supervisors may be conflicting, hence
Section IV introduces a systematic coordination scheme
based on model abstraction. Section V demonstrates its
efficiency through a realistic example.

II. NATURAL OBSERVER

Given a system described by a languageL ⊆ Σ∗, its
model abstractionis the induced system described by the
languageθ(L), where θ is a causal reporter map[16],
[18]. This paper will construct model abstractions using a
natural observer, i.e., natural projection [1], [18] having the
observerproperty [16]. Natural projection allows compo-
sitional computation. Consider a product system consisting
of two components, whose languages areLi over alphabet
Σi, i = 1, 2. We first recall the definition of thesynchronous
product[18] L1||L2. Let Pi : (Σ1 ∪Σ2)

∗ → Σ∗

i (i = 1, 2) be
the natural projections with inverse image functionsP−1

i :
Pwr(Σ∗

i) → Pwr((Σ1 ∪ Σ2)
∗). Then

L1||L2 := P−1

1
(L1) ∩ P−1

2
(L2).

To obtain an abstraction of the product system, we can
first compute its global behaviorL1||L2 and then compute
its projection. However, when the shared events of the two
components are all observable, we can instead obtain it
through abstractions of the two languages, thus avoiding
computation of the global behavior. This structural property
(Exercise 3.3.7 in [18]), summarized as Proposition 1, is
central to our method.

Proposition 1: Let Li ⊆ Σ∗

i , i = 1, 2; Σ0 ⊆ Σ := Σ1 ∪
Σ2; P0 : Σ∗ → Σ∗

0
; andQj : Σ∗

j → (Σj ∩ Σ0)
∗, (j = 1, 2),

with P0 and theQj natural projections. IfΣ1 ∩ Σ2 ⊆ Σ0,
then

P0(L1‖L2) = Q1(L1)‖Q2(L2).

The proposition is illustrated by the commutative diagram,
Fig. 1. HereΣ10 := Σ1 ∩ Σ0 andΣ20 := Σ2 ∩ Σ0.

||

||

Pwr(Σ∗

1)

×

× Pwr(Σ∗

2)

Pwr(Σ∗

10) Pwr(Σ∗

20)

Pwr((Σ1 ∪ Σ2)
∗)

Pwr(Σ∗

0)

Q1 Q2 P0

Fig. 1. Proposition 1

Natural projection may discard critical information about
the original behavior, so the resulting abstraction may not
be consistent with the original behavior with respect to
nonblocking. The following observer property is required to
ensure that whenever the observed string, sayP (s), s ∈ L,
can reach a marker state in the abstracted model via string
t ∈ Σ∗

0
, the system must also be able to reach a marker state

from string s, via stringu ∈ Σ∗ such thatP (su) = P (s)t,
as illustrated in Fig. 2.

P
(
s
)
 t

s
 u

P
 P

P
(
L
)

L

Fig. 2. Observer

Definition 1 (Observer): [16]Suppose languageL ⊆ Σ∗

and letΣ0 ⊆ Σ be an observable event subset. The natural
projectionP : Σ∗ → Σ∗

0
is anL-observerif

(∀t ∈ P (L))(∀s ∈ L)P (s) ≤ t =⇒

(∃u ∈ Σ∗) su ∈ L & P (su) = t.

The symbol≤ means that the first string is a prefix of
the second one [1], [18]. IfΣ0 = Σ or ∅, P is automat-
ically an L-observer. Denote by||L|| the state size of the
canonical recognizer[18] of L. If the natural projectionP
is an L-observer, the abstractionP (L) can be computed in
polynomial time in||L||, and ||P (L)|| ≤ ||L|| [15]. In fact,
an arbitrary natural projection can be modified in polynomial
time to be a natural observer by enlarging the observable
event set.

According to Theorem 6 in [16], the observer property
guarantees nonblocking control for a partially observed sys-
tem. If P is anL-observer, then for a languageL ⊆ Σ∗,

(∀N ⊆ P (L))P−1(N) ∩ L = P−1(N) ∩ L. (1)

In particular, if N is a controllable sublanguage for the
abstracted modelP (L), (1) means that the inverse projec-
tion P−1(N) is nonconflicting with the original systemL,
henceN is a nonblocking supervisory control with partial
observation.

The synchronous product of two languages is nonblocking
if and only if they aresynchronously nonconflicting[18].

Definition 2 (Synchronously Nonconflicting Relation):
Two languagesLi ⊆ Σ∗

i , i = 1, 2, are synchronously
nonconflictingif

L1‖L2 = L1‖L2.

If P0 has the observer property, we can check if two
languagesL1 and L2 are synchronously nonconflicting by
checking this relation between their projectionsP0(L1) and
P0(L2) instead. Since the models ofP0(Li) are smaller than
those ofLi, significant computational effort may be saved,
as suggested by the following proposition.

Proposition 2 (Synchronously Nonconflicting Criterion):
Let Li ⊆ Σ∗

i , i = 1, 2, and Σ0 ⊇ Σ1 ∩ Σ2. Let natural
projectionsQi : Σ∗

i → (Σi ∩ Σ0)
∗ be Li-observers for

i = 1, 2; then

L1‖L2 = L1 ‖L2 ⇔ Q1(L1)‖Q2(L2) = Q1(L1) ‖Q2(L2).

If Σ1 = Σ2, the synchronously nonconflicting property is
identical to the usual nonconflicting property as in [1], [18].
Just as the nonconflicting property preserves controllability,
so does the synchronously nonconflicting property.

Proposition 3: For i = 1, 2, let Ki ⊆ Li ⊆ Σ∗

i be
controllable with respect toΣi,u ⊆ Σi and Li. If K1

and K2 are synchronously nonconflicting, thenK1‖K2 is
controllable with respect toΣ1,u ∪ Σ2,u andL1‖L2.

In case the two languagesL1 and L2 are synchronously
conflicting, another language, called acoordinator, must be
introduced to resolve the conflict. As in Proposition 2, the
two languages may interact only locally, i.e., share only
a subset of events. In that case, instead of computing the
coordinator based on the full two languages themselves, we
perform this computation through their abstractions.

Proposition 4: Let Li ⊆ Σ∗

i , i = 1, 2, andΣ0 ⊇ Σ1 ∩Σ2.
In the notation of Proposition 2, ifQi is an Li−observer
(i = 1, 2) and there is a languageL0 ⊆ Σ∗

0
which satisfies

Q1(L1)||Q2(L2)||L0 = Q1(L1)||Q2(L2)||L0

then
L1||L2||L0 = L1||L2||L0.

Here, the two languagesL1 andL2 may be synchronously
conflicting. The coordinatorL0 depends only on the event
set that contains the shared events ofL1 andL2 and defines
the required natural observers. As long asL0 can resolve
the conflict betweenQ1(L1) andQ2(L2), it will resolve the
conflict betweenL1 andL2.

III. O PTIMAL NONBLOCKING LOCAL CONTROL

A local [9] controller monitors and disables only the
events in anobservableevent subset. In the previous section
we saw that the observer property is a sufficient condition
for nonblocking local control. Now we find conditions for
optimal (i.e., maximally permissive) local control.

An optimal supervisor with full observation normally dis-
ables the nearest controllable events preceding or “upstream”

to a prohibited uncontrollable event (σ, say). However, if
some of these controllable events are unobservable, the local
supervisor must disable other controllable events encountered
earlier to precludeσ. Hence the local supervisor is often
more restrictive. To remove this restriction, the observable
event set must be taken large enough to contain all the
nearest controllable events precedingσ. Such a local super-
visor will prevent the occurrence of an uncontrollable event
while allowing maximal freedom to the system. A projection
with such an observable event set is calledoutput control
consistent(OCC) (cf. [19]).

Definition 3 (OCC): Let Σ0 ⊆ Σ be an observable event
set andΣu ⊆ Σ be an uncontrollable event set. The natural
projectionP : Σ∗ → Σ∗

0
is output control consistent (OCC)

for languageL ⊆ Σ∗, if for every strings ∈ L such that

s = σ1 · · ·σk or s = s′σ1 · · ·σk, k ≥ 1

where

P (s′) 6= ǫ and (∀t < s′)P (t) < P (s′),

σi ∈ Σ − Σ0, i = 1, . . . , k − 1, but σk ∈ Σ0,

we have the property

σk ∈ Σu =⇒ (∀i = 1, . . . , k)σi ∈ Σu.

In the definition, whenσk is observable and uncontrol-
lable, its immediately preceding unobservable events mustall
be uncontrollable, namely, its nearest controllable eventmust
be observable. A polynomial algorithm has been developed
to refine a natural projection to be OCC. Note that ifΣ0 = Σ
or ∅, P is automatically OCC forL.

Equipped with this new concept, we will bring in a practi-
cal and concise sufficient condition for optimal nonblocking
local control. First, we introduce a notation for a useful
class of controllable sublanguages. WithE, Lm ⊆ Σ∗, let
C(E‖Lm, Lm) be the class of controllable sublanguages of
E‖Lm with respect toLm.

Since plant components are often autonomous and inde-
pendent agents, we shall assume the following structure for
the plant. Let the index set ben := {1, · · · , n} and assume
Σi ∩ Σj = ∅, i 6= j ∈ n. Let Mi ⊆ Σ∗

i , i ∈ n, and define

Lm = ||ni=1
Mi andL = Lm = ||ni=1

Mi.

Definition 4 (Shuffle Plant):A shuffle plantis composed
from n(≥ 1) nonblocking and pairwise disjoint components,
in the foregoing sense, whose marked languages areMi, i ∈
n.

The full alphabet of the shuffle plant isΣ :=
⋃n

i=1
Σi.

Proposition 5 (Optimal Nonblocking Local Control):
Let the uncontrollable and observable event subsets of the
shuffle plant beΣu, Σ0 ⊆ Σ, respectively, and let the control
specification beE ⊆ Σ∗

0
. Bring in natural projections:

P0 : Σ∗ → Σ∗

0

Qi := P0|Σ
∗

i : Σ∗

i → (Σi ∩ Σ0)
∗, i ∈ n.

If for i ∈ n, Qi is anMi-observer and OCC forMi, then

supC(E‖Lm, L) = sup C(E ∩ P0(Lm), P0(L))‖Lm.

Proof: See [2].
The proposition is illustrated by the commutative diagram,

Fig. 3. LanguagesupC(E‖Lm, L) describes the optimal su-
pervisor obtained by the monolithic approach. It is computed
from E and the full plantLm. On the other hand, the
languagesup C(E∩P (Lm), P (L)) describes the local super-
visor obtained fromE and the plant abstractionP0(Lm). It
requires less computation. Moreover, the combination of this
local supervisor and the plant is equivalent to the monolithic
supervisor, i.e., has the same controlled behavior.

Pwr(Σ∗

0)Pwr(Σ∗

0)Pwr(Σ∗

0)

Pwr(Σ∗)Pwr(Σ∗)Pwr(Σ∗)×

×

PP P−1

m

supC

supC

In the diagramP−1

m (L) := P−1(L) ∩ Lm

Fig. 3. Optimal Nonblocking Local Control

In case the observable event subset is the union of a
subcollection of component alphabets, namely,

Σ0 =

m⋃

j=1

Σφj , m ≤ n

(φ being a permutation ofn := {1, . . . , n}) the conditions
in the proposition hold automatically. By the proposition the
optimal control of a shuffle plant is determined only by the
components sharing events with the control specifications.
The other unrelated plant components play no role in the
control synthesis. This property has been pointed out in [9],
[18], but Proposition 5 extends it to a more general situation.

IV. CONTROL OF THESHUFFLE PLANT

Having seen how to synthesize the local modular super-
visor for one control specification, one can obtain without
difficulty a group of local modular supervisors for the full
set of control specifications imposed on the plant. Then one
should examine whether there is any conflict among these
modular supervisors and, in that case, design a coordinator
to resolve the conflict.

For definiteness, suppose there are three control specifica-
tionsEi(i = 1, 2, 3) for the shuffle plant and each one applies
only to those plant components whose indices make up the
setNi ⊆ n, i = 1, 2, 3. The three groups of plant components
come from the decomposition of the given plant and each
specification may in fact be a combination of several simple
specifications within the group. Assume

(∀i, j ∈ {1, 2, 3})Ni 6⊆ Nj .

as otherwise the two groups could be combined as one. The
corresponding subsystems have the marked languages

Hi := ||j∈Ni
Mj , i = 1, 2, 3.

The alphabets of the subsystems are

Υi :=
⋃

j∈Ni

Σj , i = 1, 2, 3.

Thus,Ei ⊆ Υ∗

i , i = 1, 2, 3.
The nonblocking and maximally permissive supervisory

control for the system can in principle be computed in one
step as

K := sup C(E1||E2||E3||Lm, L). (2)

An automaton recognizingK is the monolithic supervisor
for the control problem.

The proposed structural approach solves the problem in
four steps. We illustrate the procedure by the example in
Fig. 4. Heren = 4, N1 = {1, 2}, N2 = {3, 4}, andN3 =
{2, 3}.

M
2
 M
4
M
3
M
1

E
1
/
C
1
 E
2
/
C
2
E
3
/
C
3

(a) Step 1

M
2
 M
4
M
3
M
1

E
1
/
C
1
 E
2
/
C
2

E
3
/
C
3

K
1
 K
2

(b) Step 2

K
1

E
3
/
C
3

K
2

Q
1
(
K
1
)
 Q
2
(
K
2
)

(c) Step 3

K
1

E
3
/
C
3

K
2

Q
1
(
K
1
)
 Q
2
(
K
2
)

C

(d) Step 4

Fig. 4. Nonblocking Control of A Shuffle System

As shown in Fig 4(a), the first step is to find local modular
supervisors for all three control specifications, namely the
languages

Ki := sup C(Ei ∩ Hi, Hi), i = 1, 2, 3. (3)

For simpler representation and implementation, it is useful
to compute their supervisor reductions [13]Ci, i = 1, 2, 3,
such that

Ki = Ci||Hi, andKi = Ci||Hi.

Rather than verify the nonconflicting property among the
three modular supervisors, the second step organizes the

shuffle plant and local modular supervisors into the hier-
archical structure in Fig. 4(b). Here the controlled systems
represented byK1 and K2 are considered as two plant
components which are further regulated by supervisorK3.
In addition, K1, K2 could interact through shared events,
though this situation is not reflected in Fig. 4(b).

Using the model abstraction technique, step 3 checks
if the shuffle plant supervised by the three local modular
supervisors is nonblocking. Since each subsystem is only
partially related withK3, any events not shared withK3

can be projected out of the models ofK1 and K2. These
projections are realized by natural observersQ1 and Q2,
as specified in Proposition 6. Hence the verification ofK1,
K2, and K3 can be achieved through a relatively simple
computation onQ1(K1), Q2(K2), and K3, as shown in
Fig. 4(c).

Proposition 6: Let Υ0 ⊇ Υ3 ∪ (Υ1 ∩ Υ2) and

Qi : Υ∗

i → (Υi ∩ Υ0)
∗, i = 1, 2.

Suppose that fori = 1, 2, Qi areKi-observers and

Q1(K1)||Q2(K2)||K3 = Q1(K1)||Q2(K2)||K3,

whereKi(i = 1, 2, 3) are defined in (3). ThenK1, K2, K3

are synchronously nonconflicting and the conjunction of the
three local modular supervisors is the maximally permissive
solution to the control problem, namely,

K1||K2||K3 = K1||K2||K3,

K1||K2||K3 = K.

Proof: See [2].
In case this verification fails, i.e.,Q1(K1), Q2(K2), K3

are conflicting, we proceed to step 4 to design a coordinator
for the three supervisors. The coordination of subsystems has
been addressed in Proposition 4. Using the same idea, we can
design a coordinator for the three supervisorsKi(i = 1, 2, 3).

In principle, the coordinator for the three supervisors
is another supervisor for the new plant composed ofK3

and the abstractions ofK1 and K2. The specification for
this high level plant is simplyΥ∗, as the only purpose of
the coordinator is to resolve the conflict among the three
supervisors. This coordination scheme is shown in Fig. 4(d).

The supervisor for the high level plant is then

KC := sup C(Q1(K1)||Q2(K2)||K3, Q1(K1)||Q2(K2)||K3)
(4)

Its supervisor reduction is a languageC such that.

KC = C||Q1(K1)||Q2(K2)||K3 (5)

KC = C||Q1(K1)||Q2(K2)||K3 (6)

The following proposition provides a sufficient condition
that a supervisor recognizing languageC is the coordinator
for the three modular supervisors.

Proposition 7: Let Υ0 ⊇ Υ3 ∪ (Υ1 ∩ Υ2) and

P0 : Σ∗ → Υ∗

0
.

Then Qi = P0|Υ∗

i , i = 1, 2. If for i = 1, 2, Qi are Ki-
observers and forj ∈ n, P0|Σ∗

j are OCC forMj , then

languageC defined by (4), (5), and (6) is a coordinator for
supervisorsKi(i = 1, 2, 3) defined by Equation (3), namely,

K1||K2||K3||C = K1||K2||K3||C, (7)

K1||K2||K3||C = K. (8)
Proof: Thanks to (5) and (6),

K1||K2||K3||KC = K1||K2||K3||C

K1||K2||K3||KC = K1||K2||K3||C

Furthermore, (4) yields

KC ⊆ Q1(K1)||Q2(K2)||K3

KC ⊆ Q1(K1)||Q2(K2)||K3

Hence

KC ⊆ R−1(K3) andKC ⊆ R−1(K3),

whereR is the natural projectionR : Υ∗

0
→ Υ∗

3
. It follows

immediately that

K3||KC = KC andK3||KC = KC (9)

Finally we have

K1||K2||K3||C = K1||K2||KC

K1||K2||K3||C = K1||K2||KC

The proof of (7) is now reduced to the proof of

K1||K2||KC = K1||K2||KC ,

which will be confirmed by Proposition 4. The presumption
already ensures that theQi areKi-observers(i = 1, 2), so
we just need to show

Q1(K1)||Q2(K2)||KC = Q1(K1)||Q2(K2)||KC . (10)

Considering (9), we have

Q1(K1)||Q2(K2)||KC = Q1(K1)||Q2(K2)||K3||KC = KC

Q1(K1)||Q2(K2)||KC = Q1(K1)||Q2(K2)||K3||KC = KC .

Thus (10) follows and (7) is proved.
Since we have already shown thatK1||K2||K3||C =

K1||K2||K3||KC , (8) is transformed to

K1||K2||K3||KC = sup C(E1||E2||E3||Lm, L). (11)

Then (11) follows immediately from Proposition 4.2.2 of
[18], and the proof is complete.

V. A N AGV EXAMPLE

We apply the proposed control scheme to the coordination
of a system of automatic guided vehicles (AGVs) serving
a manufacturing work cell, adapted from [5]. The system
consists of two input stations IPS1 and IPS2 for parts of types
1, 2; three workstations WS1, WS2, WS3; one completed-
parts station CPS; and five AGVs (A1, . . . , A5). The AGVs
travel along fixed circular routes, on which they are loaded
and unloaded by stations and machines, as shown in Fig. 5.
The dashed rectangles are zones shared by the AGVs and

IPS1

IPS2

WS1

WS2

WS3

CPS

1

2

3

4

IPS

A1

A2

A3

A4

A5

−→: Direction Loaded
· · ·>: Direction Unloaded

◦: Parking Location

Fig. 5. AGV System

each zone can be occupied by at most one AGV at a time.
Further details are provided in Section 4.7 of [18].

The plant model consists of five automataAi(i =
1, . . . , 5) corresponding to the five AGVs, with alphabets
Σi, i = 1, . . . , 5. There are totally eight automaton models
for control specifications. Four (Zi, i = 1, . . . , 4) stand
for the zone restrictions, three (WSi, i = 1, . . . , 3) for
operational constraints in the workstations, and one (IPS) for
a restriction on the common loading area between IPS1 and
IPS2. Events and state transition diagrams of the automata
can be found in [18] as cited.

The connecting relationships among these models of plant
and control specifications are represented in Fig. 6, where a
block is a plant componentAi(i = 1, . . . , 5), and an oval a
control specification. A line connects a plant component and
a specification if and only if they share common events.

A
1
 A
2
 A
3

A
4
 A
5

Z
1

IPS

WS
2

Z
2

Z
4

WS
1

Z
3
,
WS
3

Fig. 6. Connecting Relationships and Decomposition

As prescribed in Section IV, we first design the local
modular supervisors of the eight specifications. The sizes
of these supervisors are listed in Table I.

In the second step, we decompose the whole AGV system
into two subsystems, bounded by dashed lines in Fig. 6. Plant
componentsA1 to A3 constitute subsystem 1 and compo-
nentsA2 to A5 subsystem 2. Combining the supervisors and
the plant of each subsystem, we obtain automaton models for

TABLE I

LOCAL MODULAR SUPERVISORS

Spec Sup (State#, Trans#) Spec Sup (State#, Trans#)
Z1 (2, 14) WS1 (4, 40)
Z2 (2, 14) WS2 (2, 12)
Z3 (2, 17) WS3 (2, 21)
Z4 (2, 11) IPS (2, 16)

the controlled behaviors of the two subsystems,S1 andS2.
They are both nonblocking.

S1(State#, Trans#):(88, 169)

S2(State#, Trans#):(1702, 4584)

In step 3, we verify the nonconflicting property between
them through abstractions based on a natural observer for
the two subsystems. Set the observable event subset of the
natural projection to be

Υ := Σ2 ∪ Σ3 ∪ {11, 43}.

Then natural projectionP : Σ∗ → Υ∗ meets the conditions
in Proposition 7.

Project(S1)(State#, Trans#): (54, 94)

Project(S2)(State#, Trans#): (231, 486)

The synchronous product of the two projections is ablocking
automaton with 396 states and 734 transitions. Consequently,
S1 andS2 are synchronously conflicting.

To resolve this conflict we synthesize a coordinator by
Proposition 7, using the projection models as the plant and
languageΥ∗ as the control specification. The coordinator
is just the modular supervisor that prunes the projection
automaton to make it controllable and nonblocking.

Coordinator (State#, Trans#):(27, 241)

In [18] the coordinator presented is an automaton with
29 states and 64 transitions. That coordinator was derived
as a natural projection of the monolithic supervisor for the
AGV system, which has 4406 states and 11338 transitions.
In contrast, the new structured approach of this paper com-
pletely avoids the computation of the monolithic supervisor.
The most costly computation is forS2, which requires only
1702 states and 4584 transitions. The saving in computational
effort is evident.

We can obtain a simpler solution to this example with
even less computation, if we use the approach presented in
[3]. The new solution includes the identical group of local
modular supervisors and a smaller coordinator of only 7
states.

VI. CONCLUSIONS

Although the synthesis of an optimal and nonblocking
supervisor generally demands exponential time, one may
often avoid the worst case and design the supervisor using
modularity and model abstraction techniques. A discrete-
event system should, if possible, be divided and orga-
nized into subsystems based on the dependency relationships

among plant components and control specifications. The
decomposition will impose a hierarchical structure on the
shuffle system. The supervisors of the low level subsystems
are computed independently without regard to their mu-
tual conflict. Subsequently coordination is realized by high
level supervision of these controlled subsystems. To reduce
computational complexity, the high level supervisors are
computed based only on abstracted models of the controlled
subsystems. Effective and consistent model abstraction is
accomplished through natural projections with the observer
and OCC properties.

REFERENCES

[1] Cassandras, C.G. and Lafortune, S. 1999.Introduction to Discrete
Event Systems. Kluwer.

[2] Feng, L. Computationally Efficient Supervisor Design. Ph.D. Thesis,
In Preparation, Electrical and Computer Engineering, University of
Toronto.

[3] Feng, L. and Wonham, W.M. 2006. Computationally Efficient Super-
visor Design: Control Flow Decomposition.WODES 2006.

[4] Gohari, P. and Wonham, W.M. 2000. On the Complexity of Super-
visory Control Design in the RW Framework.IEEE Transactions on
Systems, Man, and Cybernetics-Part B: Cybernetics, 30(5): 643-652.

[5] Holloway, L.E. and Krogh, B.H. 1990. Synthesis of Feedback Logic
Control for A Class of Controlled Petri Nets.IEEE Transactions on
Automatic Control, 35(5): 514-523.

[6] Leduc, R.J, Brandin, B.A., Lawford, M., and Wonham, W.M.2005.
Hierarchical Interface-Based Supervisory Control-Part I: Serial Case.
IEEE Transactions on Automatic Control, 50(9): 1322-1335.

[7] Leduc, R.J., Lawford, M, and Wonham, W.M. 2005. Hierarchical
Interface-Based Supervisory Control-Part II: Parallel Case. IEEE
Transactions on Automatic Control, 50(9): 1336-1348.

[8] Lee, S.H. and Wong, K.C. 2002. Structural DecentralizedControl
of Concurrent Discrete-Event Systems.European Journal of Control,
8(5): 477-491.

[9] de Queiroz, M.H. and Cury, J.E.R. 2000. Modular Control of Com-
posed Systems.Proceedings of the American Control Conference,
Chicago, Illinois, 4051-4055.

[10] Rohloff, K. and Lafortune, S. 2002. On the Computational Complexity
of the Verification of Modular Discrete-Event Systems.Proceedings
of the 41st IEEE Conference on Decision and Control, Las Vegas,
Nevada.

[11] Schmit, K., Reger, J., and Moor, T. 2004. Hierarchical Control for
Structural Decentralized DES.WODES04, 289-294.

[12] Schmit, K., Moor, T., and Perk, S. 2005. A Hierarchical Architecture
for Nonblocking Control of Decentralized Discrete Event Systems.
Proceedings of the 13th Mediterranean Conference on Control and
Automation, 902-907.

[13] Su, R. and Wonham, W.M. 2004. Supervisor Reduction for Discrete-
Event Systems.Discrete Event Dynamic Systems: Theory and Appli-
cation, 14(1): 31-53.

[14] Willner, Y. and Heymann, M. 1991. On Supervisory Control of
Concurrent Discrete-Event Systems.International Journal of Control,
54(5): 1143-1169.

[15] Wong, K.C. 1998. On the Complexity of Projections of Discrete-
Event Systems,Proceedings of the Fourth Workshop on Discrete Event
Systems, WODES98, 201-206.

[16] Wong, K.C. and Wonham, W.M. 1996. Hierarchical Controlof
Discrete-Event Systems.Discrete Event Dynamic Systems: Theory and
Application, 6(3): 241-273.

[17] Wong, K.C. and Wonham, W.M. 1998. Modular Control and Coordi-
nation of Discrete-Event Systems.Discrete Event Dynamic Systems:
Theory and Application, 8(3): 247-297.

[18] Wonham, W.M. 2005.Supervisory Control of Discrete-Event Systems,
Department of Electrical and Computer Engineering, University of
Toronto, http://www.control.toronto.edu/DES.

[19] Zhong, H. and Wonham, W.M. 1990. On the Consistency of Hierar-
chical Supervision in Discrete-Event Systems.IEEE Transactions on
Automatic Control, 35(10): 1125-1134.

